

5 Burwood Road Hawthorn VIC 3122 P: (03) 9508 0100 F: (03) 9509 6125

E: admin@prensa.com.au ABN: 12 142 106 581

17 December 2018

G0092:RPH

29327 Doc Review 52 Golf Rd, Oakleigh Sth-Rev01

Joe Khougaz
Golf Road Project Development Pty Ltd
C/o VIMG
Level 27/367 Collins Street
Melbourne VIC 3000

ADVERTISED COPY

Dear Joe,

Desktop Review of Environmental Assessment Reports for 52 Golf Road, Oakleigh South, Victoria

Prensa Pty Ltd (Prensa) was engaged by Golf Road Project Development Pty Ltd (Golf Road Project Development) on behalf of VIC Investments Management Group Pty Ltd (VIMG) to review available environmental assessment reports for the former Oakleigh South Primary School located at 52 Golf Road, Oakleigh South (the Site). The review was requested to address potential data gaps in previously completed environmental assessment work.

1 Background

Golf Road Project Development plans to develop the Site for residential purposes. The Site has an estimated land area of 20,193 m².

Prensa previously completed an Environmental Site Assessment (ESA) at the Site (reference: Prensa, *Environmental Site Assessment, 1 Beryl Avenue, Oakleigh South Victoria* (Revision 1: August 2013)) on behalf of the Department of Treasury and Finance (DTF). It is noted that 1-17 Beryl Avenue was the former address and the Site is now identified as 52 Golf Road. The report involved the review of a number of previously completed assessment reports. Prensa also conducted additional targeted soil assessment works around the former location of two (2) underground storage tanks and completion of a groundwater monitoring event.

A Site Development Management Plan (SDMP) was subsequently developed for the Site by Prensa (reference: Prensa, *Site Development Management Plan, 1 Beryl Avenue, Oakleigh South Victoria*, August 2013) to assist in future management of asbestos at the Site.

Environmental Resources Management Australia Pty Ltd (ERM) was formerly commissioned by Currie & Brown to provide environmental advice related to the potential purchase of the Site (reference: ERM, Re: Technical Review: 1-17 Beryl Avenue, Oakleigh South, 8 August 2016 (ERM 2016)). The scope of review was limited to Prensa's ESA (2013) and SDMP (2013) as well as an ENSR AECOM, Additional Environmental Site Assessment, Former Oakleigh South Primary School, Beryl Avenue, Oakleigh, Victoria (January 2008). The review concluded that, "the requirement or otherwise for an Environmental Audit will be generally be determined in the first instance by the local Planning Authority. The environmental assessments described by Prensa (2013a) suggest a low level of environmental risk and that an Environmental Audit is not required. However, this case will be strengthened by addressing the data gaps identified in the previous section, either by reference to historical reports or by completing additional works.

These data gaps include:

- Extent and quality of shallow fill close either by review of historical data or by intrusive works, include potential presence of ACM buried in fill, utilities constructed from ACM and aesthetics;
- Groundwater quality at i) lead "hotspot" and ii) in the western portion of the site close by
 installing at least two new wells in the western portion of the (no existing wells) and then complete
 a groundwater monitoring event; and
- Status of landfill gas risk assessment close by review of existing report."

Given the amount of assessment work that has been conducted to date at the Site, and in light of the fact that ERM were provided with only three (3) of the eleven (11) previous environmental assessments of the Site as part of their review, Golf Road Project Development has requested Prensa conducts a detailed review to identify whether these gaps require further assessment work.

2 Objective

The objective of this review is to assist Golf Road Project Development in addressing potential data gaps in previously completed environmental assessment work.

3 Scope of Work

Prensa's scope of work included:

- Complete a desktop review of available documentation to close data gaps identified by ERM, where possible;
- Document the findings of the desktop review in this letter report; and
- Where data gaps are noted to remain, provide recommendations for further works.

4 Legislative Framework

In completing the above tasks, Prensa gave consideration to the following regulatory framework:

- Environmental Protection Act 1970;
- Occupational Health and Safety (Asbestos) Regulations 2003, 2005
- Victorian Occupational Health and Safety Regulations 2017;
- State Environment Protection Policy (SEPP), *Prevention and Management of Contamination of Land*, 2002;
- State Environment Protection Policy (SEPP), Waters, 2018;

- National Environmental Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, May 2013, hereafter referred to as NEPC 2013;
- West Australian Department of Health, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, May 2009 (WA DoH 2009);
- Australian Standard 4482.1, Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-volatile and Semi-volatile Compounds, 2005 (AS4482.1-2005); and
- Australian Standard 4482.2, Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances, 1999.

5 Data Gap Review

Prensa completed a review of the following documents, most of which were not available to ERM at the time of its review:

- Beveridge Williams, Contamination Assessment Oakleigh South Primary School, Beryl Avenue, Oakleigh South, February 2000;
- Beveridge Williams, Validation Sampling and Testing, Oakleigh South Primary School, Beryl Avenue, Oakleigh, June 2002;
- Beveridge Williams, Contamination Assessment Oakleigh South Primary School, Beryl Avenue, Oakleigh South, May 2003;
- Golder Associates, *Preliminary Contamination Assessment and Cost Estimate DET site, Oakleigh South,* November 2005;
- HLA-Envirosciences, Environmental Site Assessment, Former Oakleigh South Primary School, Beryl Avenue, Oakleigh South, December 2006;
- HLA-Envirosciences, Groundwater Assessment, Former Oakleigh South Primary School, Beryl Avenue, Oakleigh South, January 2007;
- ENSR AECOM, Additional Environmental Site Assessment, Former Oakleigh South Primary School, Beryl Avenue, Oakleigh, Victoria, January 2008;
- Prensa, Phase 1 Preliminary Environmental Site Assessment, Former Oakleigh South Primary School, Oakleigh South VIC 3167, August 2010;
- Prensa, Environmental Site Assessment, 1 Beryl Avenue, Oakleigh South, Victoria, August 2013;
- Prensa, Desktop Landfill Gas Investigation, 1 Beryl Avenue, Oakleigh South, Victoria, March 2014; and
- Prensa, Review of Desktop Landfill Gas Investigation for 52 Golf Road, Oakleigh South, Victoria, December 2018.

Some of these reports were commissioned by DTF. The majority of the reports were commissioned by the Department of Education and Training (DET) (also formerly known as the Department of Education, Employment, and Training Facilities or the Department of Education and Early Childhood Development) and were provided to Prensa during the divestment process facilitated by DTF.

DTF was contacted by Prensa on 29 November 2018 and consent was provided by DTF on 4 December 2018 for use of the reports by the current owner, Golf Road Project Development.

It is noted that Prensa has not completed a comprehensive review of all available reports. The focus of this data gap analysis is to address the data gaps specifically identified by ERM (2016).

5.1 Extent and quality of shallow fill

5.1.1 Beveridge Williams (2000 and 2003)

Beveridge Williams completed a contamination assessment at the Site in 2003, which included establishment of twenty-two (22) gridded boreholes (BH02-05 to BH02-26), with soil samples collected throughout the soil profile. A site plan depicting the sampling locations has been attached to this report (Attachment B). The figure also identifies four (4) boreholes (BH1 to BH4) previously established by Beveridge Williams in 2000.

Borehole logs indicate that the boreholes were established to variable depths from 0.2 to 1.5 m. Fill was identified at five (5) boreholes to a maximum depth of 0.4 m. The remaining boreholes comprised either natural or 'disturbed natural' from surface.

The boreholes generally comprised grey-brown silty sand or sandy silt, fine to medium, transitioning to silty or sandy clay at approximately 0.75 m. Red brick fragments were identified near surface in BH02-5 and BH02-12. Several boreholes contained quartz gravels or basalt chips in the near surface soils. The remaining boreholes did not identify foreign inclusions. No odours or staining were identified. Photoionisation detector (PID) readings ranged from 0.0 ppm to 1.0 ppm. The borehole logs have been attached to this report (Attachment A and B).

From the twenty-six (26) boreholes, forty-seven (47) samples were analysed, with at least one near-surface sample analysed from each borehole (0-0.2 m). The samples were analysed for the following:

- All samples were analysed for metals;
- Eighteen (18) near-surface and four (4) deeper samples were analysed for organochlorine pesticides (OCPs);
- Nine (9) samples were analysed for polycyclic aromatic hydrocarbons (PAH);
- Ten (10) samples were analysed for total petroleum hydrocarbons (TPH);
- Eight (8) samples were analysed for inorganics (cyanide, fluoride, sulfate), phenols, benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organics, chlorinated hydrocarbons, and polychlorinated hydrocarbons.

The soil analytical results indicated that the contaminant concentrations were less than the adopted investigation levels, with the exception of a number of samples that reported elevated concentrations of nickel, copper, zinc and arsenic that exceeded the adopted ecological investigation levels (EILs), however these concentrations did not exceed the adopted NEPM A health investigation levels (HILs) (1999). The results tables from the assessments have been attached to this report (Attachment A and B).

5.1.2 HLA 2006

HLA completed an environmental site assessment at the Site in 2006. It is noted that Prensa only had access to the body of the report and limited attachments (one (1) figure and bore logs only). The assessment included excavation of 17 test-pits across the site, to target previously identified fill and to target two (2) former UST pits. A site plan depicting the sampling locations has been attached to this report (Attachment C).

Fill was encountered to depths of 0.4 m to 0.9m bgl in the west, central and southern areas of the site. Fill consisted of 'reworked natural' (silty sand and sandy clay) containing varying amounts of gravel, basalt fragments, brick fragments, and concrete. PID results were not recorded on the test pit logs. The test pit logs have been attached to this report (Attachment C).

Ten (10) primary samples were selectively analysed for metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury), TPH, BTEX, PAH, OCPs and organophosphorous pesticides (OPPs). All reported concentrations were below the relevant objectives for ecosystems (NEPM EIL) and human health in a standard residential setting (NEPM HIL A (1999)).

HLA concluded that the presence of gravel, basalt fragments, brick fragments and other debris in fill may affect the aesthetic amenity of the soil in the context of a residential setting.

5.1.3 ENSR AECOM 2008

ENSR AECOM completed an *Additional Environmental Site Assessment* for the Site in 2008. The assessment included a site history review, targeted soil sampling (from the former UST pits) and groundwater sampling. The report noted that asbestos cement sheeting debris was previously identified in the surface soil surrounding the areas that comprised the former site buildings and in stockpiles of brick and building rubble at the site (in HLA 2006). A contractor was engaged to remove the asbestos cement sheeting and clearance certificate was issued. ENSR AECOM recommended that an asbestos management plan be developed for the Site.

5.1.4 Review Discussion

Sampling Density

Based on AS4482.1-2005, the minimum sampling points required for site characterisation based on detection of circular hotspots using square grid for a site of this size (2.02 ha) is thirty-one (31). The sampling density employed at the Site included at least twenty-six (26) boreholes and seventeen (17) test-pits, which meets the required number of sampling locations. However, these were established in two (2) separate assessments, and many of the sample locations were in close vicinity to each other, whereby the sampling locations are not representative of a grid across the Site. Nevertheless, based on the historical use of the Site (as primary school), and targeted sampling completed around potentially contaminating features (former underground storage tanks), which was addressed separately in Prensa's 2013 assessment, the sampling density is considered appropriate to provide an indication of the potential for contamination at this Site.

Analytical Results

It is noted that both the Beveridge Williams (2000 and 2003) and the HLA (2006) assessments compared the analytical results to the now superseded NEPC 1999. Where possible, Prensa compared the analytical results to the current NEPC 2013 investigation levels. The soil analytical results from the Beveridge Williams (2000 and 2003) assessments indicated that the contaminant concentrations were less than the adopted human health investigation levels for low-density residential setting. The analytical results table and laboratory certificates from the HLA (2006) assessment were not available for review. It is noted that for the contaminants of interest at this Site (metals, TRH, PAH, and OCPs), the majority of investigation levels have remained the same or increased from NEPC 1999 to NEPC 2013, with the exception of nickel, aldrin and dieldrin, and heptachlor.

Aesthetics

Based on the borehole and test pit logs completed by Beveridge Williams (2000 and 2003) and HLA (2006), fill across the Site included gravel, basalt fragments, concrete and brick fragments and other debris. HLA indicated that the debris within the fill may affect the aesthetic amenity of the soil in the context of a residential setting. The presence of foreign materials such as gravel, basalt fragments, brick or concrete fragments, may not in itself affect the aesthetic amenity of the soil depending on size, and quantities of such materials. Additionally, soil logs completed by both Beveridge Williams (2000 and 2003) and HLA (2006) did not indicate the presence of waste within the soil profile, suggesting that the debris reported related to minor quantities.

Asbestos

ACM had been historically identified on the surface of the Site and removed (ENSR | AECOM 2008). It is noted that asbestos removal and validation at the Site was undertaken based on *Occupational Health and Safety (Asbestos) Regulations 2003*. A clearance letter for asbestos removal works was provided in the ENSR | AECOM 2008 assessment report, based on standards stipulated in *Victorian Occupational Health and Safety Regulations 2007*. It is noted that both of these regulations have now been updated (*Victorian Occupational Health and Safety Regulations 2017*). In addition, neither NEPC 2013 nor WA DOH 2009 had been released at the time of the ENSR | AECOM 2008 assessment. It is noted that WA DOH 2009 recommends test pitting as the preferred method of identification of asbestos within soils. Based on the grid-based and targeted assessments completed by Beveridge Williams (2000 and 2003), HLA (2006) and ENSR | AECOM (2008), suspected ACM was not identified within the borehole or test pit logs. The method of identification, removal and clearance, is considered generally consistent with contemporary guidance.

5.2 Groundwater Quality

5.2.1 Lead

As noted in the Prensa 2013 report, the lead concentration reported in groundwater sampled from groundwater monitoring well, MW2A, was only slightly greater than the potable water supply criteria. Negligible concentrations of lead in groundwater were detected in samples collected from surrounding wells.

It is noted that the Site is not considered source of lead contamination due to the following:

- Concentrations of lead in grid-based soil samples collected during the Beveridge Williams (2000 and 2003) assessments ranged from <5 to 77 mg/kg, well below the HIL;
- Concentrations of lead in soil sampled during the ENSR | AECOM (2008) assessment targeting the two (2) former UST pits ranged from <5 to 8.5 mg/kg;
- Historical use of the Site (golf club and school) do not represent a known source of lead contamination; and
- Former USTs at the Site were understood to have contained heating oil, which is not a known source of lead.

It was noted that groundwater was unlikely to be used for drinking water due to a reticulated water supply and no existing domestic bores in the vicinity of the Site. Additionally, ERM (2016) regarded this impact as a localised impact delineated by surrounding wells. ERM acknowledged that given the reticulated supply available for the site, groundwater is unlikely to be extracted for potable supply.

5.2.2 Groundwater Condition in the Western Portion

Although no groundwater bores have been installed in the western area of the Site (sports oval), based on the history review, and findings of the soil assessment works, sources of contamination were not identified in this area of the Site that would warrant a groundwater assessment.

5.3 Status of Landfill Gas Risk Assessment

The Desktop Landfill Gas Investigation (Prensa 2014) was not available for review by ERM.

Prensa recently reviewed this document as reported in *Review of Desktop Landfill Gas Investigation for 52 Golf Road, Oakleigh South, Victoria* (Prensa 2018). Prensa concluded in the review that the risk of landfill gas migration occurring and causing an unacceptable human health or environmental impact on the proposed residential development at 52 Golf Road, Oakleigh South, is low.

6 Conclusions and Recommendations

Based on soil logs provided within previous environmental assessment reports, ACM has not been identified within fill at the Site. Prensa acknowledges that the presence of underground ACM piping has not been investigated at the Site. This type of infrastructure would normally be identified (if present) and removed during early works at the Site. Should such infrastructure, or ACM within fill, be identified during development works, reference should be made to the SMDP plan developed for the Site.

HLA indicated that the debris within the fill may affect the aesthetic amenity of the soil in the context of a residential setting. Based on soil logs completed for the Site, debris reported within fill was not indicative of quantities that would preclude the aesthetic beneficial use in a low-density residential land use setting. It is recommended that during early works completed for the development that cognisance be given to quantities of debris encountered in the fill and managed accordingly.

Further groundwater monitoring at the Site is not considered necessary based on the history of the Site and in the context of the proposed residential land use with reticulated water supply available in the area.

Prensa (2018) considers that the risk of landfill gas migration occurring and causing an unacceptable human health or environmental impact on the proposed residential development at 52 Golf Road, Oakleigh South, is low.

7 Closing

Should you have any questions or queries regarding the report, please do not hesitate to contact me on (03) 9508 0100.

Yours sincerely,

Rachael Hofmann

Senior Environmental Consultant

Prensa Pty Ltd

Attachments

- Statement of Limitations
- Attachment A Beveridge Williams 2000 (Bore Logs, Results Table, Laboratory Reports)
- Attachment B Beveridge Williams 2003 (Figure, Bore Logs, Results Table, Laboratory Reports)
- Attachment C HLA 2006 (Figure, Test Pit Logs)

Statement of Limitations

This document has been prepared in response to specific instructions from Golf Road Project Development Pty Ltd to whom the report has been addressed. The work has been undertaken with the usual care and thoroughness of the consulting profession. The work is based on generally accepted standards, practices of the time the work was undertaken. No other warranty, expressed or implied, is made as to the professional advice included in this report.

The report has been prepared for the use by Golf Road Project Development Pty Ltd and the use of this report by other parties may lead to misinterpretation of the issues contained in this report. To avoid misuse of this report, Prensa advise that the report should only be relied upon by Golf Road Project Development Pty Ltd and those parties expressly referred to in the introduction of the report. The report should not be separated or reproduced in part and Prensa should be retained to assist other professionals who may be affected by the issues addressed in this report to ensure the report is not misused in any way.

Prensa is not a professional quantity surveyor (QS) organisation. Any areas, volumes, tonnages or any other quantities noted in this report are indicative estimates only. The services of a professional QS organisation should be engaged if quantities are to be relied upon.

Sampling Risks

Prensa acknowledges that any scientifically designed sampling program cannot guarantee all sub-surface contamination will be detected. Sampling programs are designed based on known or suspected site conditions and the extent and nature of the sampling and analytical programs will be designed to achieve a level of confidence in the detection of known or suspected subsurface contamination. The sampling and analytical programs adopted will be those that maximises the probability of identifying contaminants. Golf Road Project Development Pty Ltd must therefore accept a level of risk associated with the possible failure to detect certain sub-surface contamination where the sampling and analytical program misses such contamination. Prensa will detail the nature and extent of the sampling and analytical program used in the investigation in the investigation report provided.

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Soil contamination can be expected to be non-homogeneous across the stratified soils where present on site, and the concentrations of contaminants may vary significantly within areas where contamination has occurred. In addition, the migration of contaminants through groundwater and soils may follow preferential pathways, such as areas of higher permeability, which may not be intersected by sampling events. Subsurface conditions including contaminant concentrations can also change over time. For this reason, the results should be regarded as representative only.

Golf Road Project Development Pty Ltd recognises that sampling of subsurface conditions may result in some cross contamination. All care will be taken and the industry standards used to minimise the risk of such cross contamination occurring, however, Golf Road Project Development Pty Ltd recognises this risk and waives any claims against Prensa and agrees to defend, indemnify and hold Prensa harmless from any claims or liability for injury or loss which may arise as a result of alleged cross contamination caused by sampling.

Reliance on Information Provided by Others

Prensa notes that where information has been provided by other parties in order for the works to be undertaken, Prensa cannot guarantee the accuracy or completeness of this information. Golf Road Project Development Pty Ltd therefore waives any claim against the company and agrees to indemnify Prensa for any loss, claim or liability arising from inaccuracies or omissions in information provided to Prensa by third parties. No indications were found during our investigations that information contained in this report, as provided to Prensa, is false.

Recommendations for Further Study

The industry recognised methods used in undertaking the works may dictate a staged approach to specific investigations. The findings therefore of this report may represent preliminary findings in accordance with these industry recognised methodologies. In accordance with these methodologies, recommendations contained in this report may include a need for further investigation or analytical analysis. The decision to accept these recommendations and incur additional costs in doing so will be at the sole discretion of Golf Road Project Development Pty Ltd and Prensa recognises that that Golf Road Project Development Pty Ltd will consider their specific needs and the business risks involved. Prensa does not accept any liability for losses incurred as a result of Golf Road Project Development Pty Ltd not accepting the recommendations made within this report.

Attachment A: Beveridge Williams 2000

- Bore Logs
- Results Table
- Laboratory Reports

Beveridge Williams & Co Pty Ltd

Engineering Log Borehole

job no

BH1

sheet no

borehole no

1 of 1 D8610

client: Department of Education, Employment and Training Facilities Contamination Assessment project:

logged by: AS JE

Oakleigh South Primary School, Beryl Avenue, Oakleigh South location:

checked:

date:

21/12/99

slope 90° drill model: Hand Auger RL surface not measured hole diameter: 65mm bearing datum

material description	observations	sample details
	Background PID 0.6ppm	
SILTY SAND (SM) Grey brown, fine to medium, moist, contains crushed rock.	FILL PID 0.6ppr	#01 D CR=0
SILTY SAND (SM) Grey brown, fine to medium, moist.	NATURAL MATERIAL PID 0.6ppn	#02 D CR=0
Borehole BH1 terminated at 1.0m		-
		-
	SILTY SAND (SM) Grey brown, fine to medium, moist, contains crushed rock. SILTY SAND (SM) Grey brown, fine to medium, moist.	SILTY SAND (SM) Grey brown, fine to medium, moist, contains crushed rock. SILTY SAND (SM) Grey brown, fine to medium, moist. NATURAL MATERIAL PID 0.6ppm PID 0.6ppm PID 0.6ppm

Date 5.5.97

QAP 401 Work Instruction 301

Beveridge Williams & Co Pty Ltd Engineering Log Borehole

job no

BH2

sheet no

borehole no

1 of 1 D8610

client:

Department of Education, Employment and Training Facilities

logged by:

AS

project: Contamination Assessment location: Oakleigh South Primary School, Beryl Avenue, Oakleigh South checked:

date:

JE 21/12/99

Hand Auger

slope 90°

RL surface

not measured

drill model: hole diameter:

65mm

bearing

datum

epth	material description	observations		sample details
1		Background PID 0.	бррт	
25	SILTY SAND (SM) Grey brown, fine to medium, moist.	NATURAL MATERIAL	PID 0.6ppm	#03 D CR=0
5			PID 0.6ppm	#04 D CR=0
75				
0	Borehole BH2 terminated at 1.0m			
5				
5				
te 5.5		QAP 401 Work Inst		U II

Beveridge Williams & Co Pty Ltd

Engineering Log Borehole

sheet no job no

ВН3

1 of 1 D8610

client:

Department of Education, Employment and Training Facilities

logged by:

borehole no

AS

Contamination Assessment project:

checked:

JE

location:

Oakleigh South Primary School, Beryl Avenue, Oakleigh South

date:

21/12/99

drill model: Hand Auger slope 90° RL surface not measured 65mm hole diameter : bearing datum

depth	material description	observations		sample details
m		Background PID 0.6ppm		
- - - 0.25	SILTY SAND (SM) Grey brown, brown and cream, fine to medium, moist.		PID 0.6ppm	#05 D CR=0
<u>.</u> 0.5	SILTY SAND (SM) Grey brown, fine to medium, moist.	NATURAL MATERIAL	PID 0.6ppm	#06 D
- - - 0.75			ть олорры	CR=0
0.1	Borehole BH3 terminated at 1.0m			
	24.17.19.17.17.17.17.17.17.17.17.17.17.17.17.17.			
i <u>.</u> 25				
<u>.</u> 5				-
.75				E
				j
2.0 Date 5.5	97	QAP 401 Work Instruction	301	

Beveridge Williams & Co Pty Ltd

Engineering Log Borehole borehole no BH4

sheet no

1 of 1

job no

D8610

client:	Department of Education, Employment and Training Facilities	logged by:	AS	
project:	Contamination Assessment	checked:	JE	
location:	Oakleigh South Primary School, Beryl Avenue, Oakleigh South	date:	21/12/99	

drill model :	Hand Auger	slope 90°	RL surface	not measured
hole diameter :	65mm	bearing	datum	

epth	material description	observations		sample details
		D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	SILTY SAND (SM) Grey brown, fine to	Background PID 0.6ppm NATURAL	PID 0.6ppm	#07 D
25	medium, moist.	MATERIAL	115 б.бррш	CR=0
i				
			PID 0.6ppm	#08 D CR=0
5				2
)				
5	Borehole BH4 terminated at 1.0m			
,				
		1		
5				
		QAP 401 Work Instructi		

Table 1 Results of Chemical Testing

Client: Department of Education, Employment and Training Facilities Location: Oakleigh South Primary School, Beryl Avenue, Oakleigh South

Page 1 of 2 Ref No D8610

				Inorg	ganics (mg/	kg)						Heavy !	Metals (m	ng/kg)										
				Cyanide	Fluoride	Phenols	Sulphate	Arsenic As	Barium Ba	Beryllium Be	Boron B	Cadmium Cd	1	Chromium	Copper	Lead Pb	Manganese Mn	Mercury Hg	Molybdenum Mo	Nickel Ni	Antimony	Company of the Compan	Selenium	A. P. C. S. C.
ANZECC/N	HMRC Enviro	nmental Inv	estigation Guidelines				2000	20				3	-	50	60	300		118	IVIO		Sb	Sn	Se	Zn
Dutch B				50	400	1		30	400			5	50	250	100	150	500	2		60	20	50		200
EPAV Clear	Fill Criteria			50	450	1		30				5	50	250	_			2	10	100		50		500
EPAV Low	Level Contami	nated Soil C	Criteria	500	4500	10		300				50	500		100	300			40	100		50	10	500
	sure Setting 'A			500	1000	8500		100		20	3000	20	100	2500	1000	3000		20	400	1000		500	100	5000
NEHF Expo	sure Setting 'D	' - Residenti	al (Medium Density)	2000		34000		400		80	12000	80		_	1000	300	1500	15		600				7000
NEHF Expo	sure Setting 'E'	- Open Spa	ce	1000	-	17000	-	200	-	40		-	400		4000	1200	6000	60		2400				28000
	sure Setting 'F'			2500	+	42500		500	_	100	6000	40	200		2000	600	3000	30		600				14000
Adopted Cri		Commerc	idi ilidddi idi	50	400	42300	1 2000		100		15000	100	500		5000	1500	7500	75		3000				35000
Individual S		_		50	400	10	2000	20	400	20	3000	3	50	50	60	300	500	1	40	60	20	50	10	200
Location	Depth (m)	Sample Number	Material Description								Ģ					H								
BH1	0.0-0.4m		1 FILL - Silty Sand	<5	<5	0.1	<10	<5	14	<5	<5	<0.2	<5	8	6	15	34	<0.05	<5	<5	×6	-	-	25
BH1	0.5-1.0m	1	2 SILTY SAND	<5	<5	< 0.1	<10	46	35	<5	<5	<0.2	12	10	7	19	110	0.06	<5	7	<5 <5	<5	<5	35
BH2	0.0-0.5m		3 SILTY SAND	<5	<5	< 0.1	33	<5	12	<5	<5	<0.2	<5	<5	<5	14	35	<0.05	<5	<5	<5	<5	<5	61
BH2	0.5-1.0m		4 SILTY SAND	<5	<5	< 0.1	41	<5	7	<5	<5	<0.2	<5	<5	<5	20	10	<0.05	<5	<5		<5	<5	19
ВН3	0.0-0.4m		5 FILL - Silty Sand	<5	<5	0.2	19	<5	17	<5	<5	<0.2	<5	6	7	19	31	0.06	<5	27	<5	<5	<5	6
ВН3	0.5-1.0m		6 SILTY SAND	<5	<5	<0.1	18	<5	11	<5	<5	<0.2	<5	6	<5	<5	12	<0.05	<5 <5	<5	<5	<5	<5	56
BH4	0.0-0.5m		7 SILTY SAND	<5	<5	<0.1	<10	<5	16	<5	<5	<0.2	<5	<5	6	15	33	0.59	173	<5	<5	<5	<5	8
BH4	0.5-1.0m		8 SILTY SAND	<5	<5	<0.1	<10	<5	6	<5	<5	<0.2	<5	<5	<5	<5	7	0.59	<5 <5	<5	<5	<5	<5	35
				_	_							1 .0.2		1	1 ~	1		0.27	<2	<5	<5	<5	<5	8

46 Denotes concentrations exceeds the adopted criteria

k:\logs\Tableofchemicaltesting.xls

Table 1 Results of Chemical Testing

Client: Department of Education, Employment and Training Facilities Location: Oakleigh South Primary School, Beryl Avenue, Oakleigh South

Page 2 of 2 Ref No D8610

				pН									Organics	(mg/kg)							
					Total Pe	troleum l	Hydrocar	bons		Мопосус	lic Arom	atic Hydro	carbons	Polycyclic	Aromatic	Organochlo	rine Pesticides		Volatile	Chlorinated	In-t
					C6-C9	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	>C ₉	Benzene				Hydrocarbo		Aldrin +		Total OC	Organics	Hydrocarbons	Polychlorinated Biphenyls
Litanaaa												Benzene		Total PAH	B(a)p	Dieldrin	+ DDE	Pesticides	U.S. 1. AL		W. 10 10 10 10 10 10 10 10 10 10 10 10 10
	HMRC Enviror	nmental Inves	tigation Guidelines							1				1	1	1.3			_		ļ — —
Dutch B										0.5	3	5	5	20	1			1			-
EPA Clean	Fill Criteria				100				1000					20	1				1000		2
EPA Low L	evel Contamina	ted Soil Crite	ria		1000				10000					200	-			10			
NEHF Expo	sure Setting 'A'	- Residential	(Standard)						2.72.72					200	- 1	10	200	10			
NEHF Expo	sure Setting 'D'	- Residential	(Medium Density)						-				-	80	1		200				
	sure Setting 'E'				1		-		-						4	40	000				
									1				-	40	2	20	100				
	IF Exposure Setting 'F - Commercial/Industrial pted Criteria				1 100		_	-	1000	1	7	-	-	100	5	50	4444				
Individual		T			100				1000	1	3))	20	1	10	200	1			2
Location	Depth (m)	Sample Number	Material Description																		
BH1	0.0-0.4m		1 FILL - Silty Sand	5.8	<20	<20	<50	<50	<120	<0.5	<0.5	<0.5	<0.5	<1	<0.1	<0.1	<0.15		0.5	0.5	
BH1	0.5-1.0m		2 SILTY SAND	6.1	<20	<20	<50	<50	<120	<0.5	<0.5	<0.5	<0.5	1	0.4	<0.1		<1	<0.5	<0.5	<1
BH2	0.0-0.5m		3 SILTY SAND	5.6	<20	<20	<50	<50	<120	<0.5	<0.5	<0.5	<0.5	<1	<0.1		<0.15	<1	<0.5	<0.5	<1
BH2	0.5-1.0m		4 SILTY SAND	5.8	<20	<20	<50	<50	<120	<0.5	<0.5	<0.5	<0.5	<1		<0.1	<0.15	<1	<0.5	<0.5	<1
ВН3	0.0-0.4m		5 FILL - Silty Sand		<20	<20	<50	<50	<120	<0.5	<0.5	<0.5	<0.5		<0.1	<0.1	<0.15	<1	<0.5	<0.5	<1
ВН3	0.5-1.0m		6 SILTY SAND	5.7	<20	<20	<50	<50	<120	<0.5	<0.5			<l< td=""><td><0.1</td><td><0.1</td><td><0.15</td><td><1</td><td><0.5</td><td><0.5</td><td><1</td></l<>	<0.1	<0.1	<0.15	<1	<0.5	<0.5	<1
BH4	0.0-0.5m	1	7 SILTY SAND	5.6	<20	<20	<50	<50	<120	<0.5		<0.5	<0.5	<1	<0.1	<0.1	<0.15	<1	<0.5	<0.5	<1
BH4	0.5-1.0m		8 SILTY SAND	4.9	<20	<20	<50	<50	<120	<0.5	<0.5	<0.5	<0.5	<1	<0.1	<0.13	<0.15	<1	<0.5	<0.5	<1
	12.2 310111		CICIET I SILITE	4.2	1 -20	~20	1 /30	1 <20	<120	<0.5	< 0.5	<0.5	< 0.5	<1	< 0.1	< 0.1	< 0.15	<1	< 0.5	< 0.5	<1

k:\logs\Tableofchemicaltesting.xls

VW:dh:15319

4 January, 2000

Beveridge Williams & Co. Pty Ltd 1075 High Street ARMADALE VIC 3143

Attention: Mr I. McKenzie

Job No: D8610

Re: Oakleigh South Primary School

Soil Samples

Certificate of Analysis

WSL Report No: 265917

Date Sampled: 21.12.99

Received by WSL Consultants: 23.12.99
Instructions were received: 23.12.99

Analyses were commenced: 23.12.99

The sample(s) referred to in this report were analysed by the following methods:

 Analyte(s)
 Method
 Analyte(s)
 Method

 pH
 WSL 062
 Cyanide
 APHA 4500-CN,E&C

 Metals
 WSL 023A & 032
 Sulphate
 WSL 076

 TPH
 WSL 030
 PAH
 WSL 8100B

 MAH
 WSL 3810B
 OCP/PCB
 WSL 8080B

 Phenols (Total)
 APHA 5530 C
 Chlorinated Hydrocarbons
 WSL 8120

 Fluoride
 WSL 077
 Volatile Halogenated Organics
 WSL3810A,B

Results pertain to samples as received. Details of this report were faxed on 4.1.2000.

Yours faithfully,

WSL Consultants Pty Ltd

Director of Chemical Technology

NATA TA

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Page 1 of 19

WSL Consultants Ptv. Ltd. ACN 004 752 676 2-8 Harvey Street, R aond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000 WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Received	Sample	BH No./Depth (m)	pH	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg	Mn	Mo	Ni	Pb	Sb	Se	Sn	Zn	
265917	23-Dec-1999	01	BH1 0-0.4	5.8	<5	<5	14	<5	<0.2	<5	8	6	<0.05	34	<5	<5	15	×5	<5	<5	35	
265918	23-Dec-1999	02	BH1 0.5-1.0	6.1	46	<5	35	<5	<0.2	12	10	7	0.06	110	<5	7	19	<5	<5	<5	61	
265919	23-Dec-1999	03	BH2 0-0.5	5.6	<5	<5	12	<5	<0.2	<5	<5	<5	<0.05	35	<5	<5	14	<5	<5	<5	19	
265920	23-Dec-1999	04	BH2 0,5-1,0	5.8	<5	<5	7	<5	<0.2	<5	<5	<5	<0.05	10	<5	<5	20	<5	<5	<5	6	
265921	23-Dec-1999	05	BH3 0-0.4	6.2	<5	<5	17	<5	<0.2	<5	6	7	0.06	31	<5	<5	19	<5	<5	<5	56	
265922	23-Dec-1999	06	ВНЗ 0.5-1.0	5.7	<5	<5	11	<5	<0.2	<5	6	<5	<0.05	12	<5	<5	<5	<5	<5	<5	8	
265923	23-Dec-1999	07	BH4 0-0.5	5.6	<5	<5	16	<5	<0.2	<5	<:5	6	0.59	33	<5	<5	15	≪5	<5	<5	35	
265924	23-Dec-1999	08	BH4 0.5-1.0	4.9	<5	<5	6	<5	<0.2	<5	×5	<5	0.27	7	<5	<5	<5	<5	<5	<5	8	

WSL Consultants Prv Ltd. ACN 004 752 676 2-8 Harvey Street, R nond, Victoria 3121, Australia

Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Received	Sample	BH No./Depth (m)	TPH C6-C9	TPH C10-C14	TPH C15-C28	TPH C29-C36	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	STYRENE	CUMENE	1 2 4-TRI- METHYL BENZENE	TOTAL PHENOLS	FLUORIDE	CYANIDE	SULPHATE
265917	23-Dec-1999	01	BH1 0-0.4	<20	<20	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0,1	<5	<5	<10
265918	23-Dec-1999	02	BH1 0.5-1.0	<20	<20	<50	<50	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.1	<5	<5	<10
265919	23-Dec-1999	03	BH2 0-0.5	<20	<20	<50	<50	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<5.	<5	33
265920	23-Dec-1999	04	BH2 0.5-1.0	<20	<20	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<5	<5	41
265921	23-Dec-1999	05	BH3 0-0.4	<20	<20	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.2	<5	<5	19
265922	23-Dec-1999	06	BH3 0.5-1.0	<20	<20	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.1	<5	<5	18
265923	23-Dec-1999	07	BH4 0-0.5	<20	<20	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<5	<5	<10
265924	23-Dec-1999	08	BH4 0.5-1.0	<20	<20	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<5	<5	<10

WSL Consultants Prv Ltd. ACN 004 752 676 2-8 Harvey Street, F nond, Victoria 3121, Australia

Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Received	Sample	BH No./Depth (m)	NAP	ACY	ACE	FLU	PHE	ANT	FLA	PYR	BAA	CHR	BBF	BKF	BAP	DBA	BGP	IPY	TOTAL PAH
265917	23-Dec-1999	01	BHI 0-0,4	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
265918	23-Dec-1999	02	BH1 0.5-1.0	<0.1	<0,1	<0.1	<0.1	0.2	<0.1	0.6	0.7	0.3	0.3	0.3	0.3	0.4	<0.1	0.3	0.3	4
265919	23-Dec-1999	03	BH2 0-0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
265920	23-Dec-1999	04	BH2 0.5-1.0	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1	<1
265921	23-Dec-1999	05	BH3 0-0,4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	si
265922	23-Dec-1999	06	BH3 0.5-1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
265923	23-Dec-1999	07	BH4 0-0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
265924	23-Dec-1999	08	BH4 0.5-1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1	<1

WSL Consultants Ptv. Ltd. ACN 004 752 676 2-8 Harvey Street, F nond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Received	Sample	BH No./Depth (m)	НСВ	a-BHC	LINDANE	HEPTACHLOR	ALDRIN	b-BHC	d-BHC	HEPTACHLOR- EPOXIDE	DDE	DIELDRIN
265917	23-Dec-1999	01	BH1 0-0.4	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
265918	23-Dec-1999	02	BH1 0.5-1.0	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
265919	23-Dec-1999	03	BH2 0-0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
265920	23-Dec-1999	04	BH2 0.5-1.0	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05
265921	23-Dec-1999	0.5	BH3 0-0.4	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
265922	23-Dec-1999	06	внз 0.5-1.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
265923	23-Dec-1999	07	BH4 0-0.5	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	0.08
265924	23-Dec-1999	08	BH4 0.5-1.0	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

WSL Consultants Prv Ltd. ACN 004 752 676 2-8 Harvey Street, F nond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319

Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Received	Sample	BH No./Depth (m)	DDD	DDT	ENDRIN	METHOXYCHLOR	CHLORDANE	a-ENDO- SULPHAN	b-ENDO- SULPHAN	ENDOSULPHAN SULPHATE	ENDRIN ALDEHYDE
265917	23-Dec-1999	01	BH1 0-0.4	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
265918	23-Dec-1999	02	BH1 0.5-1.0	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
265919	23-Dec-1999	03	BH2 0-0.5	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
265920	23-Dec-1999	04	BH2 0.5-1.0	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
265921	23-Dec-1999	05	BH3 0-0.4	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
265922	23-Dec-1999	06	ВНЗ 0.5-1.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
265923	23-Dec-1999	07	BH4 0-0.5	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
265924	23-Dec-1999	08	BH4 0.5-1.0	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05

2-8 Harvey Street, I mond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319

Client: BEVERIDGE WILLIAMS

LAB NUM	Received	Sample	BH No./Depth (m)	AROCLOR 1016	AROCLOR 1221	AROCLOR 1232	AROCLOR 1242	AROCLOR 1248	AROCLOR 1254	AROCLOR 1260	TOTAL PCBs	
265917	23-Dec-1999	01	BH1 0-0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<1	
265918	23-Dec-1999	02	BH1 0.5-1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	
265919	23-Dec-1999	03	BH2 0-0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	
265920	23-Dec-1999	04	BH2 0.5-1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	
265921	23-Dec-1999	05	BH3 0-0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	
265922	23-Dec-1999	06	BH3 0.5-1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	
265923	23-Dec-1999	07	BH4 0-0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	
265924	23-Dec-1999	08	BH4 0.5-1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	

WSL Consultants Ptv. Ltd. ACN 004 752 676
2-8 Harvey Street, F nond, Victoria 3121, Australia
Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000

WSL Report No: 265917 WSL JobNumber: 15319

Client: BEVERIDGE WILLIAMS

LAB NUM	Received	Sample	BH No./Depth (m)	1 I-DI CHLORO ETHANE	DI CHLORO METHANE	TRI CHLORO METHANE	I 2-DI CHLORO ETHANE	BROMO DICHLORO METHANE	CHLORO BENZENE	1 1 2-TRI CHLORO ETHANE	CHLORO DIBROMO METHANE	1 2-DI CHLORO PROPANE	111-TRI CHLORO ETHANE
265917	23-Dec-1999	01	BH1 0-0.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265918	23-Dec-1999	02	BH1 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265919	23-Dec-1999	03	BH2 0-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265920	23-Dec-1999	04	BH2 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265921	23-Dec-1999	05	BH3 0-0.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0,5
265922	23-Dec-1999	06	ВНЗ 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265923	23-Dec-1999	07	BH4 0-0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265924	23-Dec-1999	08	BH4 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS

LAB NUM	Received	Sample	BH No./Depth	BENZAL CHLORIDE	BENZOTRI CHLORIDE	2 CHLORO NAPTHALENE	HEXA- CHLORO BUTADIENE	HEXACHLORO CYCLO PENTADIENE	HEXA- CHLORO ETHANE	PENTA- CHLORO BENZENE	1 2-DI CHLORO BENZENE	1 3-DI CHLORO BENZENE	1 4-DI CHLORO BENZENE	
265917	23-Dec-1999	01	BH1 0-0.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
265918	23-Dec-1999	02	BH1 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
265919	23-Dec-1999	03	BH2 0-0.5	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
265920	23-Dec-1999	04	BH2 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
265921	23-Dec-1999	05	BH3 0-0.4	<0.5	<0.5	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	
265922	23-Dec-1999	06	BH3 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	
265923	23-Dec-1999	07	BH4 0-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
265924	23-Dec-1999	08	BH4 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	

WSL Consultants Prv Ltd. ACN 004 752 676 2-8 Harvey Street, I nond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS

LAB NUM	Received	Sample	BH No./Depth (m)	1 2 3-TRI CHLORO BENZENE	I 2 4-TRI CHLORO BENZENE	1 3 5-TRI CHLORO BENZENE	1 2 3 4-TETRA CHLORO BENZENE	1 2 3 5-TETRA CHLORO BENZENE	I 2 4 5-TETRA CHLORO BENZENE
265917	23-Dec-1999	01	BH1 0-0.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0,5
265918	23-Dec-1999	02	BH1 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265919	23-Dec-1999	03	BH2 0-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265920	23-Dec-1999	04	BH2 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265921	23-Dec-1999	05	BH3 0-0,4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265922	23-Dec-1999	06	BH3 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265923	23-Dec-1999	07	BH4 0-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
265924	23-Dec-1999	08	BH4 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

QUALITY ASSURANCE REPORT

Date: 4-Jan-2000 WSL Report No: 265917

WSL JobNun	nber: 15319	Client: BEVE	ERIDGE WILLIAMS	Job Reference	e: D8610	- OAKLEI	GH STH	PRIMARY	SCHOOL	2											
LAB NUM	Reference	Sample	BH No./Depth (m)	pН	As	В	Ba	Ве	Cd	Co	Cr	Cu	Hg	Mn	Мо	Ni	Рь	Sb	Se	Sn	Zn
266135	23-Dec-1999	BLANK			<5	<5	<5	<5	<0.2	<5	<5	<5	<0.05	<5	<5	<5	<5	< 5	<5	<5	<5
266119	(Duplicate of 2	(65922)		5.6																	
265922	23-Dec-1999	06	BH3 0.5-1.0	5.7																	
% RPD				1.8																	
266133	(Duplicate of 2	265917)			<5	<5	14	<5	<0.2	<5	7	5	<0.05	35	<5	<5	17	-6	-ie	36	***
265917	23-Dec-1999	01	BH1 0-0.4		<5	<5	14	<5	< 0.2	<5	8	6	< 0.05	34	<5	<5	17 15	<5 <5	<5	<5	34
% RPD					0	0	0	0	0	0	13.3	18.2	0	2.9	0	0	12.5	0	<5 0	<5 0	35 2.9
266134	(Spike of 2659)	17)			96	84	98	87	89	0.4	02	00	0.04	100	~-		112-4	0.70	/40	cA:	
Expected	No. Company				84	85	94	80		84	93	90	0.84	120	85	88	100	79	91	89	120
% Recovery					114	98.8			80	82	88	86	0.80	110	80	84	95	80	80	80	110
	23-Dec-1999	01	BH1 0-0.4			1000	105	109	111	102	106	105	105	113	106	105	106	98.8	114	111	113
	23 200 1777	Ů.	DITI 0-0.4		<5	<.5	14	<5	< 0.2	<5	8	6	< 0.05	34	<5	<5	15	<5	<5	<5	35

WSL Consultants Prv Ltd. ACN 004 752 676 2-8 Harvey Street, F nond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au Web Page: www.wsl-consultants.com.au

QUALITY ASSURANCE REPORT

Date: 4-Jan-2000 WSL Report No: 265917

WSL JobNumber: 15319	Client: BEVERIDGE WILLIAMS	Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL	
----------------------	----------------------------	--	--

					oromoo. Doo	or or acc	C.C.II BII	. i ichinite	SCHOOL									
LAB NUM	Reference	Sample	BH No./Depth (m)	TPH C6-C9	TPH C10-C14	TPH C15-C28	TPH C29-C36	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES	STYRENE	CUMENE	1 2 4-TRI- METHYL BENZENE	TOTAL PHENOLS	FLUORIDE	CYANIDE	SULPHAT
266087	23-Dec-1999	BLANK						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0,5	<0.1	<5	<5	<10
266092	23-Dec-1999	BLANK		<20	<20	<50	<50											
266119	(Duplicate of 265	922)														<5		
	23-Dec-1999	06	BH3 0.5-1.0													<5		
% RPD			500000000000000000000000000000000000000													0		
266184	(Duplicate of 265	919)						< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5				
	23-Dec-1999	03	BH2 0-0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
% RPD		25	2000					0	0	0	0	0	0	0				
266190	(Duplicate of 265	918)		<20	<20	<50	<50											
265918	23-Dec-1999	02	BH1 0.5-1.0	<20	<20	<50	<50											
% RPD				0	0	0	0											
266088	(Spike of 266087)														9.8	99	d	
Expected															10	100	î	
% Recovery															98.0	99.0	100	
266087	23-Dec-1999	QC SPIKE													<0.1	<5	<5	
266183	(Spike of 265918)							3.9	3.7	3.7	12	3,3	3.7	3.7				
Expected	the an alternati							4.0	4.0	4.0	12	4.0	4.0	4.0				
% Recovery								97.5	92.5	92.5	100	82.5	92.5	92.5				
265918	23-Dec-1999	02	BH1 0.5-1.0					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				
266191	(Spike of 265922)					370												
Expected						350												
% Recovery						106												
265922	23-Dec-1999	06	BH3 0.5-1.0			<50												

A blank space indicates no test performed

WSL Consultants Prv Ltd. ACN 004 752 676

2-8 Harvey Street, I mond, Victoria 3121, Australia

Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au Web Page: www.wsl-consultants.com.au

QUALITY ASSURANCE REPORT

Date: 4-Jan-2000 WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Reference	Sample	BH No./Depth (m)	NAP	ACY	ACE	FLU	PHE	ANT	FLA	PYR	BAA	CHR	BBF	BKF	BAP	DBA	BGP	IPY	TOTAL PAH
266087	23-Dec-1999	BLANK		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
266133 265917 % RPD	(Duplicate of 2659) 23-Dec-1999	7) 01	BH1 0-0,4	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<1 <1 0
266191 Expected % Recovery 265922	(Spike of 265922) 23-Dec-1999	06	ВНЗ 0.5-1.0	1.3 1.4 92.9 <0.1	1.4 1.4 100 <0.1	1.3 1.4 92.9 <0.1	1.2 1.4 85.7 <0.1	1.5 1.4 107 <0.1	1.4 1.4 100 <0.1	1.4 1.4 100 <0.1	1.5 1.4 107 <0.1	1.4 1.4 100 <0.1	1.0 1.4 71.4 <0.1	1.0 1.4 71.4 <0.1	1.6 1.4 114 <0.1	1.2 1.4 85.7 <0.1	1.0 1.4 71.4 <0.1	1.4 1.4 100 <0.1	1.4 1.4 100 <0.1	21 22 95.5 <1

WSL Consultants Prv. Ltd. ACN 004 752 676 2-8 Harvey Street, I nond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au Web Page: www.wsl-consultants.com.au

QUALITY ASSURANCE REPORT

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Reference	Sample	BH No./Depth (m)	НСВ	a-BHC	LINDANE	HEPTACHLOR	ALDRIN	b-BHC	d-BHC	HEPTACHLOR- EPOXIDE	DDE	DIELDRIN
266087	23-Dec-1999	BLANK		< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05
266133 265917 % RPD	(Duplicate of 265 23-Dec-1999	5917) 01	ВН1 0-0.4	<0.05 <0.05 0	<0.05 <0.05 0	<0.05 <0.05 0	<0.05 <0.05 0	<0.05 <0.05 0	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05 0	<0.05 <0.05	<0.05 <0.05 0
266191 Expected % Recovery 265922	(Spike of 265922) 23-Dec-1999	06	BH3 0.5-1.0	2.7 2.8 96.4 <0.05	2.6 2.8 92.9 <0.05	2.5 2.8 89.3 <0.05	1.5 1.4 107 <0.05	1.5 1.4 107 <0.05	2.0 2.8 71.4 <0.05	2.9 2.8 104 <0.05	1.5 1.4 107 <0.05	1.3 1.4 92.9 <0.05	1.4 1.4 100 <0.05

WSL Consultants Prv Ltd. ACN 004 752 676 2-8 Harvey Street, I nond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

QUALITY ASSURANCE REPORT

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LPHAN ENDRIN ATE ALDEHYDE
5 <0.05
5 <0.05
0
1.3
1.4
5 <0.05
05

WSL Consultants Prv Ltd. ACN 004 752 676

2-8 Harvey Street, . mond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au

Web Page: www.wsl-consultants.com.au

QUALITY ASSURANCE REPORT

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAK

LAB NUM	Reference	Sample	BH No./Depth (m)	AROCLOR 1016	AROCLOR 1221	AROCLOR 1232	AROCLOR 1242	AROCLOR 1248	AROCLOR 1254	AROCLOR 1260	TOTAL PCBs
266087	23-Dec-1999	BLANK		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
. 266133 265917 % RPD	(Duplicate of 2659 23-Dec-1999	01 <i>7)</i> 01	BH1 0-0.4	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<0.1 <0.1 0	<1 <1 0
266191 Expected % Recovery 265922	(Spike of 265922) 23-Dec-1999	06	BH3 0.5-1.0	2.8 2.8 100 <0.1						2.3 2.8 82.1 <0.1	

WSL Consultants Prov. Ltd. ACN 004 752 676 2-8 Harvey Street, i. mond, Victoria 3121, Australia

Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au Web Page: www.wsl-consultants.com.au

QUALITY ASSURANCE REPORT

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS

LAB NUM	Reference	Sample	BH No./Depth (m)	I 1-DI CHLORO ETHANE	DI CHLORO METHANE	TRI CHLORO METHANE	1 2-DI CHLORO ETHANE	BROMO DICHLORO METHANE	CHLORO BENZENE	1 1 2-TRI CHLORO ETHANE	CHLORO DIBROMO METHANE	1 2-DI CHLORO PROPANE	111-TRI CHLORO ETHANE
266087	23-Dec-1999	BLANK		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
266184 265919 % RPD	(Duplicate of 265919 23-Dec-1999	03	BH2 0-0.5	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0
266183 Expected % Recovery 265918	(Spike of 265918) 23-Dec-1999	02	BHI 0.5-1.0	3.9 4.0 97.5 <0.5	3.2 4.0 80.0 <0.5	4.0 4.0 100 <0.5	3.8 4.0 95.0 <0.5	3.8 4.0 95.0 <0.5	3.9 4.0 97.5 <0.5	3.9 4.0 97.5 <0.5	3.7 4.0 92.5 <0.5	3.7 4.0 92.5 <0.5	3.8 4.0 95.0 <0.5

WSL Consultants P Ltd. ACN 004 752 676

2-8 Harvey Street, 1 mond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wslcon@ozemail.com.au Web Page: www.wsl-consultants.com.au

QUALITY ASSURANCE REPORT

Date: 4-Jan-2000 WSL Report No: 265917

WSL JobNumber: 15319 Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Reference	Sample	BH No./Depth	BENZAL CHLORIDE	BENZOTRI CHLORIDE	2 CHLORO NAPTHALENE	HEXA- CHLORO BUTADIENE	HEXACHLORO CYCLO PENTADIENE	HEXA- CHLORO ETHANE	PENTA- CHLORO BENZENE	1 2-DI CHLORO BENZENE	1 3-DI CHLORO BENZENE	I 4-DI CHLORO BENZENE
266087	23-Dec-1999	BLANK		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
266190 265918 % RPD	(Duplicate of 265918 23-Dec-1999	8) 02	BH1 0.5-1.0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0	<0.5 <0.5 0
266191 Expected % Recovery	(Spike of 265922)			1.2 1.4 85.7	1.2 1.4 85.7	1.3 1.4 92.9	1.4 1.4 100	1.3 1.4 92.9	1.4 1.4 100	1.5 1.4 107	1.2 1.4 85.7	1.3 1.4 92.9	1.5 1.4 107
265922	23-Dec-1999	06	BH3 0.5-1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Email: wslcon@ozemail.com.au Web Page: www.wsl-consultants.com.au

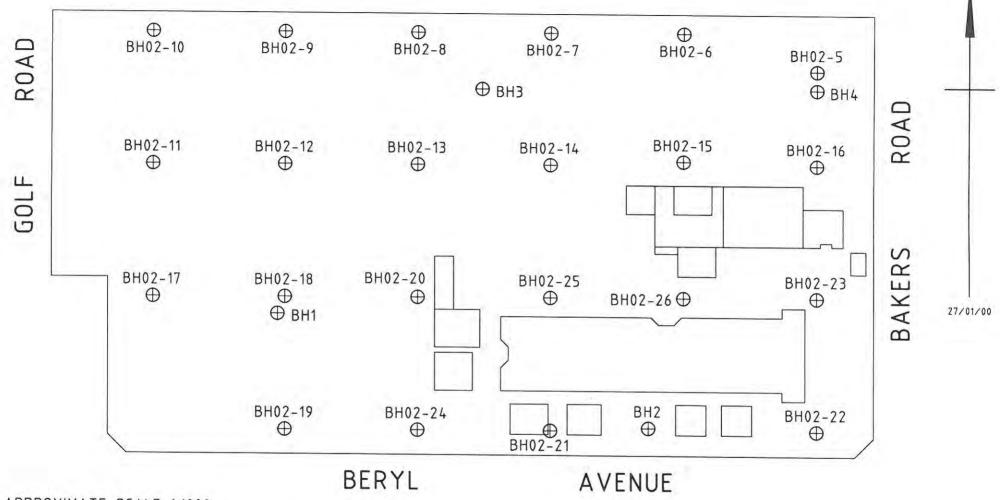
QUALITY ASSURANCE REPORT

Date: 4-Jan-2000

WSL Report No: 265917

WSL JobNumber: 15319

Client: BEVERIDGE WILLIAMS Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL


LAB NUM	Reference	Sample	BH No./Depth (m)	1 2 3-TRI CHLORO BENZENE	1 2 4-TRI CHLORO BENZENE	1 3 5-TRI CHLORO BENZENE	1 2 3 4-TETRA CHLORO BENZENE	1 2 3 5-TETRA CHLORO BENZENE	l 2 4 5-TETRA CHLORO BENZENE
266087	23-Dec-1999	BLANK		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
266190	(Duplicate of 265)	918)			<0.5				<0.5
265918	23-Dec-1999	02	BH1 0.5-1.0		<0.5				<0.5
% RPD					0				0
266191	(Spike of 265922)				1.4				2.7
Expected					1.4				2.8
% Recovery					100				96.4
265922	23-Dec-1999	06	BH3 0.5-1.0		<0.5				<0.5

Attachment B: Beveridge Williams 2003

- Figure
- Bore Logs
- Results Table
- Laboratory Reports

APPROXIMATE SCALE 1:1000

BH1 DENOTES APPROXIMATE LOCATION OF BOREHOLES.

BEVERIDGE WILLIAMS & CO.
PTY.LTD. ACN 006 197 235
SURVEYORS .ENGINEERS .PLANNERS
1075 HIGH STREET ARMADALE (03)98229799
48 LYDIARD ST SOUTH. BALLARAT (03)53313877
23 BAIR STREET LEDNGATHA (03)56622630
31 MURRAY STREET WONTHAGGI (03)56721505

SITE PLAN SHOWING APPROXIMATE LOCATIONS OF BOREHOLES OAKLEIGH SOUTH PRIMARY SCHOOL BERYL AVENUE, OAKLEIGH SOUTH

FIGURE 2
REF. NO. D8610
K:\ENVIRON\PROJECT FILES\8610\BHOLES.DGN

Borehole

borehole no

BH02-5

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter :	65mm	bearing	datum	

depth	material description	observations	sample details
m			
0.25	SANDY SILT. Grey to brown. Rootlets present at surface with occasional red brick fragments. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.	DISTURBED NATURAL MATERIAL	02-5-1 02-5-1A 0.0-0.2m, CR=0 PID=0.2ppm
	Becoming lighter brown with depth. Becoming grey with depth.		02-5-2
0.5			0.4-0.5m, CR=0
0.75 1.0 1.25 	End of borehole at 0.5m depth.		PID=0.4ppm
2.0 Date 5.5.9	07	QAP 401 Work Instruction 301	

Beveridge Williams & Co Pty Ltd

Engineering Log

Borehole

borehole no

BH02-6

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter :	65mm	bearing	datum	

depth m	material description	observations	sample details
0.25	Slightly CLAYEY SANDY SILT. Brown to dark brown. Contains rootlets and bark close to the surface. Contains fine, uniform, subrounded quartz gravel. Dry. No odour. Becoming lighter brown with depth. SILT. Light brown. Contains very fine, uniform, subrounded quartz gravel. Dry.	DISTURBED NATURAL MATERIAL	02-6-1 0.0-0.2m, CR=0 PID=0.4ppm
0.5	No odour. SILTY CLAY. Orange mottled dark grey. Contains fragments of cemented sandy silt in the upper level. Very stiff. Low plasticity. Dry. No odour. Increased yellow mottling with depth. Occasional red mottling with depth.		CR=0, PID=0.2ppm 02-6-3 0.5-0.6m, CR=0 PID=0.1ppm 02-6-4 0.8-0.9m, CR=0
1.0 	End of borehole at 0.9m depth (auger refusal).		PID=0.2ppm
1.75 2.0	97	QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-7

sheet no

1 of 1 D8610

client: project:

Department of Education and Training

logged by: checked: D. Pendergast M. Schulz

location:

Contamination Assessment
Oakleigh South Primary School, Oakleigh South

date:

18-Dec-02

drill model : hole diameter :

Hand auger 65mm

slope 90° bearing RL surface n

datum

not measured

depth m	material description	observations	sample details
11			
	SANDY SILT. Grey to brown. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.	DISTURBED NATURAL MATERIAL	02-7-1 0.0-0.2m, CR=0 PID=0.4ppm
0.25 -	Becoming lighter grey/brown with depth.		
- .5	End of Louis 10 for Louis		02-7-2 0.4-0.5m, CR=0
	End of borehole at 0.5m depth.		PID=0.4ppm
75 -			
- - <u>0</u>			
25			
			The E
5			
75			
) ate 5.5.		QAP 401 Work Instruction 301	

borehole no BH02-8 sheet no 1 of 1 job no D8610

client;	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter:	65mm	bearing	datum	

Becoming dark brown occasionally mottled orange with depth. Becoming dark grey with depth. Contains fine, uniform, subrounded quartz gravel. Dry. No odour. Becoming brown with depth. End of borehole at 0.6m depth. 0.75	DISTURBED NATURAL MATERIAL NATURAL MATERIAL	02-8-1 02-8-2 (DUP) 0.0-0.2m, CR=0 PID=0.8ppm
fine, uniform, subrounded quartz gravel. Dry. No odour. Becoming dark brown occasionally mottled orange with depth. Becoming dark grey with depth. Contains fine, uniform, subrounded quartz gravel. Dry. No odour. Becoming brown with depth. End of borehole at 0.6m depth.		02-8-3 0.5-0.6m, CR=0 PID=0.8ppm
mottled orange with depth. Becoming dark grey with depth. Contains fine, uniform, subrounded quartz gravel. Dry. No odour. Becoming brown with depth. End of borehole at 0.6m depth. 0.75 1.00 1.25	NATURAL MATERIAL	02-8-3 0.5-0.6m, CR=0
End of borehole at 0.6m depth. 0.75		0.5-0.6m, CR=0
End of borehole at 0.6m depth. 0.75 1.0 1.25 1.5		PID=0.2ppm
7.75 		

sheet no

borehole no

BH02-9

Borehole

job no

1 of 1 D8610

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter :	65mm	bearing	datum	

depth	material description	observations	sample details
m			
	SANDY SILT. Grey to brown. Contains large, angular basalt fragments/ screenings and fine, uniform, subrounded quartz gravel. Dry. No odour.	DISTURBED NATURAL MATERIAL	02-9-1 0.0-0.2m, CR=0 PID=0.3ppm
			02-9-2 0.4-0.5m, CR=0
	End of borehole at 0.5m depth (auger refusal).		PID=0.2ppm
.75 - - - .0 Date 5.5.	07	QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-10

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter:	65mm	bearing	datum	

depth m	material description	observations	sample details
	SANDY SILT, Brown. Contains fine,	DISTURBED NATURAL MATERIAL	02-10-1
=	uniform, subrounded quartz gravel,		0.0-0.2m, CR=0
_	rootlets, and occasional basalt fragments. Dry. No odour.		PID=0.2ppm
0.25	=1,7,110 04042.	1.	
		1	
_	Becoming light brown to beige with depth.		
2	December 11 In the wife to being with depth.	1	02-10-2
0.5			0.4-0.5m, CR=0
	End of borehole at 0.5m depth.		PID=0.2ppm
X			- President -
4			
0.75			
0.75			_
-			
-			3
			- 3
1.0			
-			
-		M	
=			
1.25			
_			
5			1
			1 -
_	14	ξ"	
.75			
			L -
	A A		
.0 ate 5.5.	07	QAP 401 Work Instruction 301	

Beveridge Williams & Co Pty Ltd

borehole no

BH02-11

Engineering Log

sheet no job no

1 of 1 D8610

Borehole

Department of Education and Training

Oakleigh South Primary School, Oakleigh South

logged by: checked:

D. Pendergast M. Schulz

project: location:

client:

Contamination Assessment

date:

18-Dec-02

drill model: hole diameter:

Hand auger 65mm

slope 90° bearing

RL surface

not measured datum

depth m	material description	observations	sample details
	CANDALONIO		
_	SANDY SILT. Brown. Contains rootlets and very fine quartz gravel. Dry. No odour.	NATURAL MATERIAL	02-11-1
-	and very fine quartz graver, Dry. No odour.		0.0-0.2m, CR=0 PID=0.2ppm
E/A			115-0.2ppm
0.25			
_			
-			
<u> </u>	SILTY CLAY. Orange mottled brown.		02-11-2
0.5	Stiff. Low plasticity. Dry. No odour.		0.4-0.5m, CR=0
-	End of borehole at 0.5m depth.		PID=0.1ppm
0.75			
-			
_			
_		XIII	
1.0			
_	1		
=			
	A 1		
.25			- N
_	1		
_			
.5			
-			
./3			
-			
. 0			
ate 5.5.	97	QAP 401 Work Instruction 301	

borehole no sheet no

BH02-12

job no

1 of 1 D8610

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter :	65mm	bearing	datum	

depth m	material description	observations	sample details
3	SILT. Brown to dark brown. Contains rootlets and fine, uniform, subrounded quartz gravel. Contains large basalt	DISTURBED NATURAL MATERIAL	02-12-1 0.0-0.2m, CR=0 PID=0.2ppm
0.25	fragments and red brick fragments. Dry. No odour.	NATURAL MATERIAL	
_	Becoming brown to orange with depth. Coarser quartz gravel with depth.		02-12-2
0.5 	End of borehole at 0.4m depth (auger refusal).		0.35-0.4m, CR=0 PID=0.1ppm
			-
- . <u>5</u>			
-			
75 -			
- .0 ate 5.5.9		QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-13

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter:	65mm	bearing	datum	

depth m	material description	observations	sample details
	CLAYEY SANDY SILT. Brown to dark brown. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.	NATURAL MATERIAL	02-13-1 02-13-2(DUP) 0.0-0.2m, CR=0 PID=0.0ppm
	Becoming light brown to beige with depth.		02-13-3 0.4-0.5m, CR=0
	End of borehole at 0.5m depth.		PID=0.0ppm
0.75 —			_
1.0			
1.25			
<u>1.7</u> 5 –			
- 2.0 Date 5.5.		QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-14

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model:	Hand auger	slope 90°	RL surface	not measured
hole diameter :	65mm	bearing	datum	

depth m	material description	observations	sample details
111			
	SANDY SILT. Grey to brown. Contains rootlets. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.	NATURAL MATERIAL	02-14-1 02-14-1A 0.0-0.2m, CR=0 PID=0.3ppm
).25			
_	Becoming light brown occasionally mottled brown with depth.		02-14-2
0.5	End of borehole at 0.5m depth.		0.4-0.5m, CR=0
	End of borehole at 0.5th deput.		PID=0.2ppm
_			
4			
.75			
2			1
3			
.0			

Borehole

borehole no

BH02-15

sheet no

1 of 1

јов

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	18-Dec-02

drill model:	Hand auger	slope 90°	RL surface	not measured
hole diameter:	65mm	bearing	datum	

depth	material description	observations	sample details
m			
	SANDY SILT. Grey to brown. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.	NATURAL MATERIAL	02-15-1 0.0-0.2m, CR=0 PID=0.2ppm
0.25			
— — 0.5	Becoming lighter brown with depth.		
	becoming fighter brown with depth.		02-15-2 0.5-0.6m, CR=0 PID=0.0ppm
0.75	Becoming beige and mottled orange with depth.		
	SANDY CLAY. Light grey to beige mottled orange. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.		02-15-3 0.8-0.9m, CR=0 PID=0.0ppm
1.0 	End of borehole at 0.9m depth.		
2.0 Date 5.5 .	97	QAP 401 Work Instruction 301	

sheet no

borehole no

BH02-16

job no

1 of 1 D8610

client: Department of Education and Training logged by: D. Pendergast project: Contamination Assessment checked: M. Schulz location: Oakleigh South Primary School, Oakleigh South date: 19-Dec-02

slope 90° drill model: Hand auger RL surface not measured hole diameter: 65mm bearing datum

depth	material description	observations	sample details
m			
	SANDY SILT. Brown to light brown. Contains fine, uniform, subrounded quartz gravel and rootlets. Dry. No odour.	NATURAL MATERIAL	02-16-1 02-16-2 (DUP) 0.0-0.2m, CR=0 PID=0.5ppm
0.25 — —	Becoming brown to grey with depth. Becoming mottled light brown to beige with depth.		02-16-3
0.5			0.4-0.5m, CR=0
0.75 	End of borehole at 0.5m depth.		PID=0.8ppm
<u> </u>			
ate 5.5.	97	QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-17

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	19-Dec-02

drill model:	Hand auger	slope 90°	RL surface	not measured
hole diameter:	65mm	bearing	datum	

depth	material description	observations	sample details
m			
	SANDY SILT. Brown. Contains fine, uniform, subrounded quartz gravel and basalt screenings. Contains rootlets. Dry. No odour.	DISTURBED NATURAL MATERIAL	02-17-1 02-17-1A 0.0-0.2m, CR=0 PID=0.6ppm
0.25 0.5 0.75 0.75 1.0 1.25 1.5	No odour. End of borehole at 0.2m depth (auger refusal).		0.0-0.2m, CR=0 PID=0.6ppm
1.75 — — —			
2.0 Date 5.5.	.97	QAP 401 Work Instruction 301	

Beveridge Williams & Co Pty Ltd

Borehole

borehole no

BH02-18

Engineering Log

sheet no job no

1 of 1

D8610

client:

Department of Education and Training

Oakleigh South Primary School, Oakleigh South

logged by: checked:

D. Pendergast M. Schulz

project: location: Contamination Assessment

date:

19-Dec-02

drill model: hole diameter:

Date 5.5.97

Hand auger 65mm

slope 90° bearing

RL surface datum

not measured

depth	material description	observations	sample details
n			
	SILTY SAND. Dark brown. Contains basalt screenings and fine, uniform, subrounded quartz gravel. Dry. No odour.	FILL MATERIAL	02-18-1 0.0-0.2m, CR=0 PID=0.6ppm
<u>Σ.5</u> — — — — — —	SANDY SILT. Brown mottled orange. Contains fine, uniform, subrounded quartz gravel. Dry. No odour. Grades to SANDY CLAY. Dark brown mottled orange and occasionally black. Soft. Medium plasticity. Dry to moist. No odour.	NATURAL MATERIAL	02-18-2 0.4-0.5m, CR=0 PID=0.3ppm 02-18-3 0.6-0.7m, CR=0 PID=0.6ppm
	VERY SILTY CLAY. Dark grey to black. Contains fine, uniform, subrounded quartz gravel. Moist. No odour.		02-18-4 0.8-0.9m, CR=0 PID=0.5ppm
	SAND. Tan. Contains fine, uniform, subrounded quartz gravel. Moist. No odour.		02-18-5 1.2-1.3m, CR=0 PID=0.5ppm
7.75	CLAY. Orange mottled light brown and occasionally red. Firm to stiff. Medium to high plasticity. Moist. No odour. End of borehole at 1.5m depth.		1.4-1.5m, CR=0 PID=0.8ppm

QAP 401 Work Instruction 301

Borehole

borehole no

BH02-19

sheet no

1 of 1

job no

D8610

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	19-Dec-02

drill model : Hand auger slope 90° RL surface not measured hole diameter : 65mm bearing datum

depth m	material description	observations	sample details
Y 4			
	SANDY SILT. Brown to grey. Contains crushed basalt rock/screenings and fine, uniform, subrounded quartz gravel. Dry. No odour.	DISTURBED NATURAL MATERIAL	02-19-1 0.0-0.2m, CR=0 PID=1.0ppm
).25 	End of borehole at 0.2m depth (auger refusal).		
).5 			
).75 			
1.0 - -			
<u>.5</u>			
- - -			
.0 Date 5.5.	97	QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-20

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	19-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter :	65mm	bearing	datum	

depth m	material description	observations	sample details
11			
U.	SANDY SILT. Brown. Contains fine,	DISTURBED NATURAL MATERIAL	02-20-1
	uniform, subrounded quartz gravel and		0.0-0.2m, CR=0
	crushed basalt rock/screenings.		PID=1.0ppm
0.25	End of borehole at 0.2m depth		
_	(auger refusal).	U	
_			
_			
0.5			
0.75			
0.75			
0.75			
1.0			
1.0			
_			
=			- I) I
24			
_			
-			
_			
1.5			
-			
_			
 0			
1.75			
=",			
		0.00	
2.0			
Date 5.5	.97	QAP 401 Work Instruction 301	

borehole no

BH02-21

sheet no

1 of 1

job no

D8610

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	19-Dec-02

slope 90° drill model: Hand auger RL surface not measured bearing hole diameter: 65mm datum

depth m	material description	observations	sample details
	SANDY SILT. Brown to grey. Contains fine, uniform, subrounded quartz gravel and rootlets. Dry. No odour.	NATURAL MATERIAL	02-21-1 0.0-0.2m, CR=0 PID=0.4ppm
 - - - - - 5	Becoming brown with depth. Contains pockets of light brown sand. Dry. No odour.		
 - - - 75			02-21-2 0.5-0.6m, CR=0 PID=0.2ppm
	Becoming lighter brown with depth.		02-21-3
Ō	Mottled brown to light brown with depth.		0.9-1.0m, CR=0
2 <u>5</u>	End of borehole at 1.0m depth.		PID=0.6ppm
² 5			
)			
te 5.5.	97	QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-22

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	19-Dec-02

drill model:	Hand auger	slope 90°	RL surface	not measured
hole diameter :	65mm	bearing	datum	

SILT. Grey to light brown. rootlets and fine, uniform, ed quartz gravel. Dry. No odour.	NATURAL MATERIAL	02-22-1
rootlets and fine, uniform,	NATURAL MATERIAL	
1 8	1	0.0-0.2m, CR=0 PID=0.2ppm
		02-22-2 0.4-0.5m, CR=0
		PID=0.1ppm
lighter brown with depth.		
		02-22-3 0.9-1.0m, CR=0
rehole at 1.0m depth.		PID=0.0ppm
	1	
	1	
	1	
	1	10
	SANDY SILT. Light brown lighter brown with depth. Dist. No odour.	SANDY SILT. Light brown lighter brown with depth.

sheet no

borehole no

BH02-23

1 of 1

Borehole

job no

D8610

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	19-Dec-02

drill model: Hand auger slope 90° RL surface not measured hole diameter: 65mm bearing datum

depth m	material description	observations	sample details
11		La Agree	
	SANDY SILT. Grey brown mottled brown. Contains rootlets and fine, uniform, subrounded quartz gravel. Dry. No odour.	NATURAL MATERIAL	02-23-1 02-23-2 (DUP) 0.0-0.2m, CR=0 PID=0.2ppm
	Becoming brown with depth.		
— 0.5 —			02-23-3 0.4-0.5m, CR=0 PID=0.2ppm
_ _ 			
- -			-
	SANDY CLAY. Mottled tan and orange. Soft. Low plasticity. Moist. No odour.		02-23-4 0.9-1.0m, CR=0
	End of borehole at 1.0m depth.		PID=0.1ppm
<u>.2</u> 5			
- - . <u>5</u>			
<u>.5</u> -			
- .75			
9			
.0			

Borehole

borehole no

BH02-24

sheet no

job no

1 of 1

D8610

orenole

client: Department of Education and Training project: Contamination Assessment

logged by: checked: D. Pendergast

location: Oakleigh South Primary School, Oakleigh South

date:

M. Schulz 19-Dec-02

drill model: Hand auger slope 90° RL surface not measured hole diameter: 65mm bearing datum

depth	material description	observations	sample details
m			
	ASPHALT	FILL MATERIAL	
_	SANDY SILT. Brown to grey. Contains crushed basalt rock/screenings and some asphalt fragments. Dry. No odour.		02-24-1, 02-24-1A 0.05-0.2m, CR=1 PID=0.0ppm
0.25	VERY CLAYEY SILT. Dark grey occasionally mottled red. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.	NATURAL MATERIAL	02-24-2 0.2-0.3m, CR=0 PID=0.4ppm
0.75	Becoming brown with depth. Becoming light brown with depth.		
	SANDY SILT. Tan mottled brown. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.		02-24-3 0.8-1.0m, CR=0 PID=0.2ppm
1.25 	End of borehole at 1.0m depth.		
— 2.0 Date 5.5 .	.97	QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-25

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	19-Dec-02

drill model : hole diameter :	Hand auger 65mm	slope 90°	RL surface	not measured
note diameter,	OJIIII	bearing	datum	
depth mate	erial description	observations		sample details

depth m	material description	observations	sample details
m			
	ASPHALT	FILL MATERIAL	
	SAND. Tan. Abundant fine, uniform,	The second second second	1
	subrounded quartz gravel. Dry. No odour.		02-25-1
			0.1-0.2m, CR=0
0.25			PID=0.2ppm
	SILT. Dark grey occasionally mottled	NATURAL MATERIAL	
_	green near surface. Contains fine, uniform,		02-25-2
<u> </u>	subrounded quartz gravel. Dry. No odour.		0.3-0.4m, CR=0
0.5			PID=0.7ppm
0.5		ľ	1
-			
	SANDY SILT. Tan to grey. Contains fine,	-	02-25-3
_	uniform, subrounded quartz gravel. Moist.		0.6-0.7m, CR=0
0.75	No odour.	V .	PID=0.0ppm
			_
		1	
		1	
	SILTY CLAY, Grey mottled brown. Firm.		02-25-4
1.0	Medium plasticity. Moist. No odour.		0.9-1.0m, CR=0
_	End of borehole at 1.0m depth.		PID=0.0ppm
		la constant de la con	
_			
.25			
			P-
→		1	
-			
-			
5			
.75			11/1 = ==
-			,
_			4
-			
0			411
ate 5.5.	97	QAP 401 Work Instruction 301	

Borehole

borehole no

BH02-26

sheet no

1 of 1

job no

client:	Department of Education and Training	logged by:	D. Pendergast
project:	Contamination Assessment	checked:	M. Schulz
location:	Oakleigh South Primary School, Oakleigh South	date:	19-Dec-02

drill model :	Hand auger	slope 90°	RL surface	not measured
hole diameter:	65mm	bearing	datum	

depth m	material description	observations	sample details
0.	Asphalt covering at the surface to 0.03m depth. SILT. Grey to brown. Contains abundant basalt screenings/crushed rock fragments. Dry. No odour.	FILL MATERIAL	02-26-1, 0.03-0.1m CR=0, PID=0.2ppm 02-26-2 0.1-0.3m, CR=0 PID=0.5ppm
	CLAYEY SILT. Dark grey. Contains fine, uniform, subrounded quartz gravel. Dry. No odour.	NATURAL MATERIAL	
0.5	SANDY SILT. Tan. Contains fine, uniform, subrounded quartz gravel. Moist. No odour.		02-26-3 0.4-0.5m, CR=0 PID=0.2ppm
	Becoming light tan with depth.		
	SILTY CLAY. Grey mottled orange. Firm. Medium plasticity. Moist. No odour.		02-26-4 0.75-0.85m, CR=0 PID=0.2ppm
1.0	Becoming grey occasionally mottled orange. Stiff. Moist. No odour.		02-26-5 0.95-1.05m, CR=0
	End of borehole at 1.05m depth.		PID=0.1ppm
1.25 —			
_ _ 			
			_
= 0			
2.0 Date 5.5.	07	QAP 401 Work Instruction 301	-

1 Denotes concentration exceeds adopted or modified criteria

10 Denotes concentration exceeds EPA Fill criteria

196 Denotes concentration exceeds NEPM health investigation level (Residential)

[†] ANZECC B, NEPM and Dutch B criteria for Chromium (III)

											Не	avy Me	etals (m	g/kg)							
					Arsenic As	Boron B	Barium Ba	Beryllium Be	Cadmium Cd	Cobalt Co	Chromium† Cr	Copper	Mercury Hg	Manganese Mn	Molybdenum Mo	Nickel Ni	Lead	Antimony Sb	Selenium Se	Tin	Zinc Zn
ANZECC	B Criteria				20	7.			3		50	60	1	500		60	300	20		50	200
Dutch B					30	4	400		5	50	250	100	2	-		100	150	-		50	500
EPA Fill C	riteria				30	-	-		5	50	250	100	2	104	40	100	300	I W	10	50	500
EPA Low	Level Contaminated Sc	oil Criteria			300	- 61		-	50	500	2500	1000	20		400	1000	3000		100	500	2.77
NEPM Eco	ological Investigation L	evels - Interim Urb	oan		20		300	-	3	-	400	100	1	500	-100	60	600	1	100		5000
	alth Investigation Level				100	3000	-	20	20	100	120000	1000	15	1500		600	300	4	-	- 6	200
	alth Investigation Leve		Minimal Acc	ess to Soil	400	12000	200	80	80	400	480000	4000	60	6000	132	2400	1200	-	-	-	7000
	alth Investigation Level				200	6000	-	40	40	200	240000	2000	30	3000		600	600	_	1-7	0.0	28000
	alth Investigation Leve		110000000000000000000000000000000000000	78	500	15000		100	100	500	600000	5000	75	7500	-	3000	1500	100		- 1-5	14000
Adopted C					20	3000	300	20	3	50	400	100	1	500	40	-	_		-	5	35000
Modified (Criteria 2 part Composi	te			10	1500	150	10	1.5	25	200	50	0.5	250	20	60	600 300	20	10	50	200
Modified (Criteria 3 part Composi	te			7	1000	100	7	1	17	133	33	0.33	167	13	30		10	5	25	100
	Criteria 4 part Composi				5	750	75	5	0.75	12.5	100	25	0.33	125	10	20	200	7	3	17	67
Individua	and a first transfer of the first transfer o				_	7.50	1 73	1	0.73	12.3	100	23	0.25	125	10	15	150	5	2.5	12.5	50
Location	Depth (m)	Sample Number	Sample Date	Material Description																	
BH02-5	0.0-0.2	02-5-1	18-Dec-02	Sandy Silt	<5	<5	14	<5	<0.2	<5	6	<5	0.49	32	<5	<5	12	<5	<5		12
BH02-6	0.0-0.2	02-6-1	18-Dec-02	Sandy Silt	9	<5	9	<5	<0.2	<5	7	<5	0.12	9	<5	<5	24	<5	<5	<5 <5	12 <5
BH02-6	0.4-0.5	02-6-2	18-Dec-02	Silt	<5	<5	<5	<5	<0.2	<5	<5	<5	< 0.05	5	<5	<5	<5	<5	<5	<5	<5
BH02-6	0.5-0.6	02-6-3	18-Dec-02	Silty Clay	<5	7	25	<5	<0.2	9	57	<5	< 0.05	21	<5	20	11	<5	<5	<5	<5
BH02-6	0.8-0.9	02-6-4	18-Dec-02	Silty Clay	<5	<5	31	<5	<0.2	7	44	<5	<0.05	10	<5	13	9	<5	<5	<5	<5
BH02-7	0.0-0.2	02-7-1	18-Dec-02	Sandy Silt	<5	<5	9	<5	<0.2	<5	8	8	0.18	17	<5	<5	14	<5	<5	<5	7
BH02-8	0.0-0.2	02-8-1	18-Dec-02	Sandy Silt	<5	<5	14	<5	<0.2	<5	7	9	<0.05	31	<5	<5	23	<5	<5	<5	33
BH02-9	0.0-0.2	02-9-1	18-Dec-02	Sandy Silt	5	<5	92	<5	<0.2	<5	22	13	< 0.05	110	<5	11	24	<5	<5	<5	-
BH02-10	0.0-0.2	02-10-1	18-Dec-02	Sandy Silt	15	<5	18	<5	<0.2	<5	14	7	< 0.05	56	<5	10	26	<5	<5	<5	43 25
BH02-10	0.4-0.5	02-10-2	18-Dec-02	Sandy Silt	<5	<5	<5	<5	<0.2	<5	<5	<5	< 0.05	7	<5	<5	<5	<5	<5	<5	_
BH02-11	0.0-0.2	02-11-1	18-Dec-02	Sandy Silt	12	<5	19	<5	<0.2	<5	21	7	0.09	88	<5	11	77	<5	<5	<5	<5 24
BH02-11	0.4-0.5	02-11-2	18-Dec-02	Silty Clay	22	<5	15	<5	<0.2	<5	22	7	0.08	69	<5	12	23	<5	<5	<5	_
BH02-12	0.0-0.2	02-12-1	18-Dec-02	Silt	14	<5	14	<5	<0.2	<5	14	<5	< 0.05	52	<5	9	19	<5	<5	<5	15
BH02-12	0.35-0.4	02-12-2	18-Dec-02	Silt	30	<5	12	<5	<0.2	<5	16	<5	<0.05	28	<5	7	9	<5	<5	<5	<5
BH02-13	0.0-0.2	02-13-1	18-Dec-02	Sandy Silt	<5	<5	19	<5	0.4	<5	7	280	0.09	39	<5	8	48	<5	<5	<5	320
BH02-14	0.0-0.2	02-14-1	18-Dec-02	Sandy Silt	<5	<5	10	<5	<0.2	<5	<5	6	<0.05	16	<5	<5	15	<5	<5	<5 <5	
BH02-15	0.0-0.2	02-15-1	18-Dec-02	Sandy Silt	<5	<5	12	<5	<0.2	<5	<5	<5	0.57	21	<5	<5	13	<5	<5	<5	10
BH02-15	0.5-0.6	02-15-2	18-Dec-02	Sandy Silt	<5	<5	<5	<5	<0.2	<5	<5	<5	<0.05	<5	<5	<5	<5	<5	<5	<5	12

^{*} NEPM and Dutch B criteria for complexed cyanide

1 Denotes concentration exceeds adopted or modified criteria

10 Denotes concentration exceeds EPA Fill criteria

100 Denotes concentration exceeds NEPM health investigation level (Residential)

* NEPM and Dutch B criteria for complexed cyanide

† ANZECC B, NEPM and Dutch B criteria for Chromium (III)

							1	-			Н	avy M	etals (m	g/kg)							
					Arsenic As	Boron	Barium Ba	Beryllium Be	Cadmium	Cobalt	Chromium† Cr	Copper	Mercury Hg	Manganese Mn	Mofybdenum Mo	Nickel Ni	Lead Pb	Antimony Sb	Selenium Se	Tin Sn	Zinc
ANZECC E	3 Criteria				20	-8-	1.47	100	3	(29-1)	50	60	1	500	Total	60	300	20		50	20
Dutch B					30		400		5	50	250	100	2	1035L	11/5	100	150	- 2	1 82	50	50
EPA Fill Ci	riteria				30	15	-	4	5	50	250	100	2		40	100	300	-	10	50	50
EPA Low L	Level Contaminated So	il Criteria			300		-		50	500	2500	1000	20	+4-	400	1000	3000	-	100	500	50
NEPM Eco	logical Investigation L	evels - Interim Urb	an		20	1974	300	5	3	-	400	100	1	500	1	60	600			-	20
VEPM Hea	Ith Investigation Level	'A' - Residential			100	3000	F	20	20	100	120000	1000	15	1500	11.2	600	300	-	-	-	70
NEPM Hea	Ith Investigation Level	'D' - Residential -	Minimal Acc	ess to Soil	400	12000	9	80	80	400	480000	4000	60	6000	1.00	2400	1200	-	1		28
	lth Investigation Level				200	6000	62.1	40	40	200	240000	2000	30	3000	- 00	600	600		-	1	14
	lth Investigation Level				500	15000		100	100	500	600000	5000	75	7500	10.00	3000	1500		1 2		350
Adopted Ci	riteria				20	3000	300	20	3	50	400	100	1	500	40	60	600	20	10	50	20
	riteria 2 part Composit	te			10	1500	150	10	1.5	25	200	50	0.5	250	20	30	300	10	5	25	10
	Criteria 3 part Composit				7	1000	100	7	1	17	133	33	0.33	167	13	20	200	7	3	17	6
	riteria 4 part Composit				5	750	75	5	0.75	12.5	100	25	0.25	125	10	15	150	5	2.5	12.5	-
Individual	Samples												0.00	1.20	1	1.5	150	-	1 4.0	12.5	- 3
Location	Depth (m)	Sample Number	Sample Date	Material Description																	
BH02-15	0.8-0.9	02-15-3	18-Dec-02	Sandy Clay	<5	<5	5	<5	<0.2	9	15	<5	<0.05	9	<5	8	7	<5	<5	<5	<
BH02-16	0.0-0.2	02-16-1	19-Dec-02	Sandy Silt	<5	<5	12	<5	0.3	<5	11	<5	0.68	34	<5	<5	16	<5	<5	<5	1
BH02-17	0.0-0.2	02-17-1	19-Dec-02	Sandy Silt	19	<5	14	<5	<0.2	5	20	6	<0.05	69	<5	16	20	<5	<5	<5	2
BH02-18	0.0-0.2	02-18-1	19-Dec-02	Silty Sand	7	<5	12	<5	<0.2	<5	9	<5	<0.05	2.7	<5	<5	13	<5	<5	<5	<
BH02-18	0.4-0.5	02-18-2	19-Dec-02	Sandy Silt	6	<5	12	<5	<0.2	<5	7	<5	<0.05	34	<5	<5	<5	<5	<5	<5	<
BH02-18	0.6-0.7	02-18-3	19-Dec-02	Sandy Clay	65	<5	10	<5	<0.2	<5	13	<5	<0.05	59	<5	11	9	<5	<5	<5	<
BH02-18	0.8-0.9	02-18-4	19-Dec-02	Very Silty Clay	16	<5	<5	<5	<0.2	<5	<5	<5	<0.05	8	<5	<5	<5	<5	-	-	-
BH02-19	0.0-0.2	02-19-1	19-Dec-02	Sandy Silt	21	<5	14	<5	0.3	<5	16	6	<0.05	56	<5	10	20	_	<5	<5	<
BH02-20	0.0-0.2	02-20-1	19-Dec-02	Sandy Silt	7	<5	13	<5	<0.2	<5	11	<5	<0.05	43	<5	6	18	<5 <5	<5	<5	1
BH02-21	0.0-0.2	02-21-1	19-Dec-02	Sandy Silt	<5	<5	9	<5	<0.2	<5	<5	6	<0.05	28	<5	<5	17	<5	-	<5	1
BH02-21	0.9-1.0	02-21-3	19-Dec-02	Sandy Silt	-		-	-		-	-	-	- 40.03	- 20	<2	<2	- 17	<5	<5	<5	1
BH02-22	0.0-0.2	02-22-1	19-Dec-02	Sandy Silt	<5	<5	<5	<5	<0.2	<5	<5	<5	<0.05	7	<5	<5	7	<5	<5	<5	(<
BH02-23	0.0-0.2	02-23-1	19-Dec-02	Sandy Silt	<5	<5	11	<5	<0.2	<5	<5	<5	< 0.05		<5	<5	12	<5	<5	<5	-
BH02-23	0.9-1.0	02-23-4	19-Dec-02	Sandy Clay	<5	<5	5	<5	<0.2	<5	8	<5	< 0.05	7	<5	<5	<5	<5	<5	<5	1
BH02-24	0.05-0.2	02-24-1	19-Dec-02	Sandy Silt	27	5	23	<5	<0.2	8	33	6	<0.05		<5	20	17	<5	<5	<5	1
BH02-24	0.2-0.3	02-24-2	19-Dec-02	Very Clayey Silt	<5	<5	15	<5	<0.2	<5	<5	<5	<0.05	10	<5	<5	11	<5	<5	<5	1
BH02-25	0.1-0.2	02-25-1	19-Dec-02	Sand	<5	<5	<5	<5	<0.2	<5	<5	<5	<0.05	54	<5	7	<5	<5	<5	<5	
BH02-25	0.3-0.4	02-25-2	19-Dec-02	Silt	<5	<5	24	<5	<0.2	<5	<5	<5	< 0.05	73	<5	<5	12	<5	<5	<5	1 2
BH02-26	0.03-0.1	02-26-1	19-Dec-02	Asphalt Gravel	<5	<5	14	<5	<0.2	23	13	26	<0.05	_	<5	83	<5	<5	<5	< 5	-
BH02-26	0.2-0.3	02-26-2	19-Dec-02	Clayey Silt	7	<5	6	<5	<0.2	<5	<5	18	<0.05	19	<5	<5	13	<5	<5	_	1 . 6
BH02-26	0.75-0.85	02-26-4	19-Dec-02	Silty Clay	<5	≼5	13	<5	<0.2	<5	20	<5	<0.05	19	<5	7	6	<5	_	<5	18
				,,	~3		14	1 3	-0.2	1	40		\U.UJ	13	(S)	1 /	0	(5)	<5	<5	1 2

Table 2
Results of Chemical Testing
Soil Samples

Page 3 of 4 Ref No: D8610

Denotes concentration exceeds adopted or modified criteria

10 Denotes concentration exceeds EPA Fill criteria

100 Denotes concentration exceeds NEPM health investigation level (Residential)

[†] ANZECC B, NEPM and Dutch B criteria for Chromium (III)

					Tota	al Petro	oleum I	Hydroc	arbons		Pol	ycyclic .	Aromatic	Hydroc	arbons		-	Ore		cs (mg/kg orine Pest		
					°2-°2	C10-C14	C ₁₅ -C ₂₈	C29-C36	>C,	Total PAH	B(a)p	Naphthalene	Anthracene	Phenanthrene	Fluoranthene	Pyrene	Dieldrin	Aldrin + Dieldrin	Chlordane	DDT + DDD + DDE	Heptachlor	Total OC Pesticides
ANZECC	B Criteria				17	1.0	15	12	R	1=2	145	1741	75.7	-	Tel	175	0.2					—
Dutch B							14		1-2.1	20	1	5	10	10	10	10	0.2	1		- 5		
EPA Fill C					100	-	1.70	· eu	1000	20	3.4	100	1940	-	10-11	- 1		-	-	2	TIE.	1
	Level Contaminated Se				1000	9.1	10-0	4	10000	200	-	ID 40						-	2	-		10
NEPM Eco	ological Investigation I	Levels - Interim Url	ban		- 2	8	1	(GE)	1-11	-	124	12-1	-	-	-	11.0	4			-	-	10
NEPM He	alth Investigation Leve	l'A' - Residential			,	-	13-11	-	-	20	1		100	-	-		1.2	10	50	200	10	100
NEPM He	alth Investigation Leve	l 'D' - Residential -	Minimal Acc	ess to Soil		38	i+Li	-	Take 1	80	4	100		1-2	- 2	-		40	200	800	40	-
NEPM He	alth Investigation Leve	l 'E' - Parks, Open	Space and Pla	ying Fields	10	3-5	19-1	- 41	100	40	2		1.27		- 4	100		20	100	400	20	1 12
NEPM He	alth Investigation Leve	l 'F' - Commercial/	Industrial		100	1	(40)	100	1201	100	5	-	-	100	-	140		50	250	1000	50	
Adopted C	riteria	1			100	-	1.6-	-	1000	20	1	5	10	10	10	10	0.2	_				
Modified (Criteria 2 part Composi	ite			50	- 0	-	-	500	10	0.5	2.5	5	5	5	5	0.2	10	50 25	200	10	1.
Modified (Criteria 3 part Composi	ite			33		13	-	333	7	0.33	1.7	3.3	3.3	3.3	3.3	0.07	3	17	100	5	0.5
	Criteria 4 part Compos				25	- 2	12	4.	250	5	0.25	1.25	2.5	2.5	2.5	2.5	0.07	2.5	12.5	67	3	0.33
Individual	Samples							-	1 230		0.25	1.23	2.3	2.3	2.3	2.5	0.05	2.5	12.5	50	2.5	0.25
Location	Depth (m)	Sample Number	Sample Date	Material Description															- 1			
BH02-5	0.0-0.2	02-5-1	18-Dec-02	Sandy Silt	-	7-5	3-1	-	154-			-	-	-		-	<0.05	-0.1	0.05	0.45	0.05	-
BH02-6	0.0-0.2	02-6-1	18-Dec-02	Sandy Silt	-	28	1	-	201		-	-					<0.05	<0.1	<0.05	<0.15	<0.05	<0.9
BH02-6	0.4-0.5	02-6-2	18-Dec-02	Silt	-		1-1		100							-		<0.1	<0.05	<0.15	<0.05	<0.9
BH02-6	0.5-0.6	02-6-3	18-Dec-02	Silty Clay			147			8	17261		40	1		-		-	-	14.	-	
BH02-6	0.8-0.9	02-6-4	18-Dec-02	Silty Clay	-		-		1 2 1		-	-		-	-	-		-	- 4	-		1.35
BH02-7	0.0-0.2	02-7-1	18-Dec-02	Sandy Silt	7		-		-	-	301		-	-	-		1 4 1	-	- 4	- 4		
BH02-8	0.0-0.2	02-8-1	18-Dec-02	Sandy Silt	-		-	-	-	2			-			133	- 0.05	-	-	-	1,000	1
BH02-9	0.0-0.2	02-9-1	18-Dec-02	Sandy Silt		147	14		740		-		1			Let Mile Let	<0.05	<0.1	<0.05	<0.15	<0.05	<0.9
BH02-10	0.0-0.2	02-10-1	18-Dec-02	Sandy Silt			-			-	-	-		-		Trop 1	0.05		-	3	177-07	
BH02-10	0.4-0.5	02-10-2	18-Dec-02	Sandy Silt		9	-	10.		- 20	100	10 1	-				<0.05	<0.1	<0.05	<0.15	<0.05	<0.9
BH02-11	0.0-0.2	02-11-1	18-Dec-02	Sandy Silt	-		1		100				-			11.5	1104.1	-	-	19	11.	-
BH02-11	0.4-0.5	02-11-2	18-Dec-02	Silty Clay	-	-	10.	-	1020	4					-	7-2.1			- 6	- P.		HILE
BH02-12	0.0-0.2	02-12-1	18-Dec-02	Silt	-	- 2	-	-	102			-				- 0	- 0.05	-	-	(%/		10.4
BH02-12	0.35-0.4	02-12-2	18-Dec-02	Silt	-	-	-		-			-	7)	-		HE CALL	<0.05	<0.1	<0.05	<0.15	< 0.05	<0.9
BH02-13	0.0-0.2	02-13-1	18-Dec-02	Sandy Silt	-		1	-	-	-		-				080	-	8		4.00		10.0
BH02-14	0.0-0.2	02-14-1	18-Dec-02	Sandy Silt	14	-	Œ.			-	-	-		-			-0.05	-			1.72	9.
BH02-15	0.0-0.2	02-15-1	18-Dec-02	Sandy Silt	-	3	-	1.4		-	67	-			-		<0.05	<0.1	<0.05	<0.15	<0.05	<0.9
BH02-15	0.5-0.6	02-15-2	18-Dec-02	Sandy Silt	_			-	-	-			-	-	1.0	1 30	-	-	4		1.2	-

^{*} NEPM and Dutch B criteria for complexed cyanide

Denotes concentration exceeds adopted or modified criteria
 Denotes concentration exceeds EPA Fill criteria
 Denotes concentration exceeds NEPM health investigation level (Residential)

[†] ANZECC B, NEPM and Dutch B criteria for Chromium (III)

					Tota	l Petro	laum L	Judroo	arbons		D 1	41	e e e							cs (mg/k		
					101	ii reno	leum r	Tydroc.	I		Pol		Aromatic	Hydrod		1		Org	anochlo	rine Pes	ticides	
					62-92	C10-C14	C ₁₅ -C ₂₈	C29-C36	, , ,	Total PAH	B(a)p	Naphthalene	Anthracene	Phenanthrene	Fluoranthene	Pyrene	Dieldrin	Aldrin + Dieldrin	Chlordane	DDT + DDD + DDE	Heptachlor	Total OC Pesticides
ANZECC	B Criteria				197	74	-			= 1	4			11.51	L.	-	0.2	-	Let 1		1	
Dutch B	NIL-E				1-1-1		1.4	147	Tree.	20	1	5	10	10	10	10		1	-		-	-
EPA Fill C					100	13.7	-		1000	20	- 67	1		-	100	201	10.24	17.90	17.20			1
	Level Contaminated Soi				1000	1a			10000	200		-			1.2		-			TEST		10
NEPM Eco	ological Investigation Le	evels - Interim Ur	ban		-		14/	17-1	ind=		41	100	-		1.2.	E 147		1 501	-	17.	1	10
NEPM Hea	alth Investigation Level	'A' - Residential				12.1	120		I DATE	20	1	- 12	224.1	TLA I	- 2	- 27		10	50	200	10	-
NEPM Hea	alth Investigation Level	'D' - Residential -	Minimal Aco	cess to Soil	18	1.	1.		HOST.	80	4		7.0	-	J. B.			40	200	800	40	1
NEPM Hea	alth Investigation Level	'E' - Parks, Open	Space and Pla	aying Fields	THE		4.	Mg.	-	40	2	-		-	100	-		20	100	400	20	
	alth Investigation Level	'F' - Commercial/	Industrial		5.50	1340	(4)	114	40.	100	5	7-4/-1	16.	1			-	50	250	1000	50	
Adopted C					100	18		-	1000	20	1	5	10	10	10	10	0.2	10	50	200	_	-
	Criteria 2 part Composit				50	128	100	-	500	10	0.5	2.5	5	5	5	5	0.1	5	25	100	10	1
	Criteria 3 part Composit				33	176	14.	19	333	7	0.33	1.7	3.3	3.3	3.3	3.3	0.07	3	17		5	0.5
Modified C	Criteria 4 part Composit	e			25	172	-	15	250	5	0.25	1.25	2.5	2.5	2.5	2.5	0.07	2.5	12.5	67 50	3	0.33
Individual	Samples											1,000	2.5	1 2.5	2.0	2,3	0.03	2.3	12.5	30	2.5	0.25
Location	Depth (m)	Sample Number	Sample Date	Material Description																		
BH02-15	0.8-0.9	02-15-3	18/Dec/02	Sandy Clay	-	152	-	7-2-	1.3	-		2	11.2		-							-
BH02-16	0.0-0.2	02-16-1	19/Dec/02	Sandy Silt	-	54.	14		1 2				-	123		7		-0.1	-	10.	-	-
BH02-17	0.0-0.2	02-17-1	19/Dec/02	Sandy Silt	-	1181		1.2		- 501	V62.7		1	1			<0.05	<0.1	<0.05	< 0.15	<0.05	<0.9
BH02-18	0.0-0.2	02-18-1	19/Dec/02	Silty Sand		100	-	112		-			-		- 0	•	<0.05		-1	1.14	·	
BH02-18	0.4-0.5	02-18-2	19/Dec/02	Sandy Silt		73		1.0		<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	_	<0.1	< 0.05	< 0.15	<0.05	< 0.9
BH02-18	0.6-0.7	02-18-3	19/Dec/02	Sandy Clay	103	104		1.00	-	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		Text	79.6	II.		
BH02-18	0.8-0.9	02-18-4	19/Dec/02	Very Silty Clay	0.01	104	142		0.1	-	-	-0.1	-0.1	-0.1	-0.1		9	7.5	1.00		111461	1.0
BH02-19	0.0-0.2	02-19-1	19/Dec/02	Sandy Silt	-		4		-1		1		-	1		34	1.74	-	15.	-	T A	1.0
BH02-20	0.0-0.2	02-20-1	19/Dec/02	Sandy Silt				101	1.5	- 10					-	3.1			1.0		11.0	10.2
BH02-21	0.0-0.2	02-21-1	19/Dec/02	Sandy Silt	<20	<20	<50	<50	<120	-					-	-			1.0			-
BH02-21	0.9-1.0	02-21-3	19/Dec/02	Sandy Silt	<20	<20	<50	<50	<120	- 351			-	1.3	5	12.	<0.05	<0.1	<0.05	< 0.15	<0.05	<0.9
BH02-22	0.0-0.2	02-22-1	19/Dec/02	Sandy Silt	12	100			120		178			-		-	-	-		-	1.791	1
BH02-23	0.0-0.2	02-23-1	19/Dec/02	Sandy Silt	100	100		11.	11-120 0	-	13.2	- 1				- 0	<0.05	<0.1	< 0.05	< 0.15	< 0.05	<0.9
BH02-23	0.9-1.0	02-23-4	19/Dec/02	Sandy Clay	- 4		7.0		10.00						1.6%	-	<0.05	<0.1	<0.05	< 0.15	< 0.05	< 0.9
BH02-24	0.05-0.2	02-24-1	19/Dec/02	Sandy Silt	1.1411	100	-			<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-0.05	-0.	-0.04	-		- 6
BH02-24	0.2-0.3	02-24-2	19/Dec/02	Very Clayey Silt		1320	-	Ly	h-7	1.0	-0.1		~0,1	-0.1	<0.1	<0.1	<0.05	<0.1	<0.05	< 0.15	<0.05	< 0.9
BH02-25	0.1-0.2	02-25-1	19/Dec/02	Sand	-	1.4	1		1 2		100			-		-	-		-	E.O.L.	-	-
BH02-25	0.3-0.4	02-25-2	19/Dec/02	Silt	-	108.4	-	132	- A	<]	<0.1	<0.1	<0.1	<0.1	_	-0.1				U.	-	
BH02-26	0.03-0.1	02-26-1	19/Dec/02	Asphalt Gravel	-			- 3	1.41	- 2	-0.1	-0.1	-0.1	<0.1	<0,1	<0.1	<0.05	<0.1	< 0.05	<0.15	<0.05	<0.9
BH02-26	0.2-0.3	02-26-2	19/Dec/02	Clayey Silt	- 1	T all	-			<1	<0.1	<0.1	<0.1		-	+ + + + + + + + + + + + + + + + + + + +	-0.04		11.9.11		-	-
BH02-26	0.75-0.85	02-26-4	19/Dec/02	Silty Clay	-	Tar.		-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	< 0.05	< 0.15	< 0.05	< 0.95
					1	-								- 340			-	4	-	42	77.4	11/4

^{*} NEPM and Dutch B criteria for complexed cyanide

Your Ref: D8610 - OAKLEIGH STH PRIMARY

SCHOOL

6 January 2003

Bevericge Williams & Co. Pty. Ltd. PO Box 2205

CAUFELD JUNCTION VIC 3161

Date Received: 23/12/2002

Date Sampled: 18 & 19/12/2002

Attention:

M . lan McKenzie

Certificate of Analysis

WSL Report Number: 522805

The sample(s) referred to in this report were analysed by the following methods:

Analyte(s) Method

Metals WSL-032 OCs WSL8000 PAHs WSL8000 TPH WSL030

Results pertain to samples as received

Details of this report were faxed on: 6/01/2003

Yours faithfully

WSL Consultants Pty Ltd

Nick Bray

Manager Of Chemistry

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with is terms of accreditation. This document shall not be reproduced except in full.

Accreditation No's 1201 & 1205

WSL Consultan v. Ltd.

A.C.N. 004 752 676 A.B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

Date: 6-Jan-2003

WSL Report No: 522805

					11 1000 54 5	or other transfers			1 001100	***											
LAB NUM	Received	Sample	BH No.	Depth (m)	As	В	Ba	Ве	Cd	Co	Cr	Cu	Hg	Mn	Мо	Ni	Pb	Sb	Se	Sn	Zn
522805	23-Dec-2002	02-5-1	BH02-5	0.0-0.2	<5	<5	14	<5	<0.2	<5	6	<5	0.49	32	<5	<5	12	<5	<5	<5	12
522808	23-Dec-2002	02-6-1	BH02-6	0.0-0.2	9	<5	9	<5	<0.2	<5	7	<5	0.12	9	<5	<5	24	<5	<5	< 5	<5
522809	23-Dec-2002	02-6-2	BH02-6	0.4-0.5	<5	<5	<5	<5	<0.2	<5	<5	<5	<0.05	5	<5	<5	<5	<5	<5	<5	-<5
522810	23-Dec-2002	02-6-3	BH02-6	0.5-0.6	<5	7	25	<5	<0.2	9	57	<5	<0.05	21	<5	20	11	<5	<5	<5	<5
522811	23-Dec-2002	02-6-4	BH02-6	0.8-0.9	<5	<5	31	<5	<0.2	7	44	<5	< 0.05	10	<5	13	9	<5	<5	<5	<5
522812	23-Dec-2002	02-7-1	BH02-7	0.0-0.2	<5	<5	9	<5	<0.2	<5	8	8	0.18	17	<5	<5	14	<5	<5	<5	7
522814	23-Dec-2002	02-8-1	BH02-8	0.0-0.2	<5	<5	14	<5	0.2	<5	7	9	<0.05	31	<5	<5	23	<5	<5	<5	33
522815	23-Dec-2002	02-8-2	BH02-8		11	<5	12	<5	<0.2	<5	7	8	< 0.05	36	<5	<5	26	<5	<5	<5	33
522817	23-Dec-2002	02-9-1	BH02-9	0.0-0.2	5	<5	92	<5	<0.2	<5	22	13	< 0.05	110	<5	11	24	<5	<5	<5	43
522819	23-Dec-2002	02-10-1	BH02-10	0.0-0.2	15	<5	18	<5	<0.2	<5	14	7	< 0.05	56	<5	10	26	<5	<5	<5	25
522820	23-Dec-2002	02-10-2	BH02-10	0.4-0.5	<5	<5	<5	< 5	<0.2	<5	<5	<5	<0.05	7	<5	<5	⊲ 5	<5	<.5	<5	<5
522821	23-Dec-2002	02-11-1	BH02-11	0.0-0.2	12	<:5	19	<5	<0.2	<5	21	7	0.09	88	<5	11	77	<5	<5	<5	24
522822	23-Dec-2002	02-11-2	BH02-11	0.4-0.5	22	<5	15	<5	<0.2	<5	22	7	0.08	69	<5	12	23	<5	<.5	<.5	15
522823	23-Dec-2002	02-12-1	BH02-12	0.0-0.2	14	<5	14	<5	<0.2	<5	14	<5	< 0.05	52	<5	9	19	<5	<5	<5	12
522824	23-Dec-2002	02-12-2	BH02-12	0.35-0.4	30	<5	12	<5	<0.2	<5	16	<5	< 0.05	28	<5	7	9	<5	<5	<5	∹5
522825	23-Dec-2002	02-13-1	BH02-13	0.0-0.2	<5	<5	19	<5	0.4	<5	7	280	0.09	39	<5	8	48	<5	<5	<5	320
522828	23-Dec-2002	02-14-1	BH02-14	0.0-0.2	-:5	<5	10	<5	<0.2	<5	<5	6	<0.05	16	<5	<5	15	<5	<5	<5	10
522830	23-Dec-2002	02-15-1	BH02-15	0.0-0.2	<5	<5	12	<5	<0.2	<5	<5	<5	0.57	21	<5	<5	13	<5	-:5	<5	12
522831	23-Dec-2002	02-15-2	BH02-15	0.5-0.6	<5	<5	<5	<5	<0.2	<5	<5	<5	< 0.05	<5	<5	<5	<5	<:5	<:5	<5	<5
522832	23-Dec-2002	02-15-3	BH02-15	0.8-0.9	<5	<5	5	<5	<0.2	9	15	<5	<0.05	9	<5	8	7	<5	<5	<5	₹5

WSL Consultan* v. Ltd.

A.C.N. 004 752 676 ...B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

Date: 6-Jan-2003

WSL Report No: 522805

			E.A. W. S. S. S. W. A. S. J.			0.000	OLL CITE	THE ME	Lucitoo	-											
LAB NUM	Received	Sample	BH No.	Depth (m)	As	В	Ba	Ве	Cd	Co	Cr	Cu	Hg	Mn	Мо	Ni	Pb	Sb	Se	Sn	Zn
522834	23-Dec-2002	02-16-1	BH02-16	0.0-0.2	<5	<5	12	<5	0.3	<5	11	<5	0.68	34	<5	<5	16	<5	<5	<5	5
522835	23-Dec-2002	02-16-2	BH02-16		<5	<5	21	<5	0.3	<5	12	<5	1.2	43	<5	6	20	<5	<5	<5	15
522837	23-Dec-2002	02-17-1	BH02-17	0.0-0.2	19	<5	14	<5	<0.2	5	20	6	<0.05	69	<5	16	20	<5	<5	<5	20
522838	23-Dec-2002	02-18-1	BH02-18	0.0-0.2	7	<5	12	<5	< 0.2	<5	9	<5	<0.05	27	<5	<5	13	<5	<5	<5	<5
522839	23-Dec-2002	02-18-2	BH02-18	0.4-0.5	6	<5	12	<5	<0.2	<5	7	<5	<0.05	34	<5	<5	<5	<5	<5	<5	<5
522840	23-Dec-2002	02-18-3	BH02-18	0.6-0.7	65	<5	10	<5	<0.2	<5	13	<5	<0.05	59	≪5	11	9	<5	<5	<5	-<5
522841	23-Dec-2002	02-18-4	BH02-18	0.8-0.9	16	<5	<5	<5	<0.2	<5	<5	<5	< 0.05	8	<5	<5	<5	<5	<5	<5	<5
522844	23-Dec-2002	02-19-1	BH02-19	0.0-0.2	21	<5	14	<5	0.3	<5	16	6	<0.05	56	<5	10	20	<5	<5	<5	9
522845	23-Dec-2002	02-20-1	BH02-20	0.0-0.2	7	<5	13	<5	<0.2	<5	11	<5	< 0.05	43	<5	6	18	<5	<5	45	15
522846	23-Dec-2002	02-21-1	BH02-21	0.0-0.2	<5	<5	9	<5	<0.2	<5	<5	6	< 0.05	28	<5	<5	17	<:5	<5	<5	16
522849	23-Dec-2002	02-22-1	BH02-22	0.0-0.2	<5	<5	<5	<5	<0.2	<5	<5	<5	< 0.05	7	<5	<5	7	<5	< 5	<5	<5
522852	23-Dec-2002	02-23-1	BH02-23	0.0-0.2	<5	<5	11	<5	<0.2	<5	<5	<5	< 0.05	24	<5	<5	12	÷:5	<5	<5	13
522855	23-Dec-2002	02-23-4	BH02-23	0.9-1.0	<5	<5	5	<5	<0.2	<5	8	<5	< 0.05	7	<5	<5	<5	<5	<5	<5	∹5
522856	23-Dec-2002	02-24-1	BH02-24	0.0-0.2	27	5	23	<5	<0.2	8	33	6	<0.05	120	<5	20	17	<5	≪5	<5	18
522857	23-Dec-2002	02-24-2	BH02-24	0.2-0.3	<5	<5	15	<5	<0.2	<5	<5	<5	<0.05	10	45	√< 5	11	-:5	<5	<5	<5
522859	23-Dec-2002	02-25-1	BH02-25	0.0-0.2	<5	<5	<5	<5	<0.2	<5	<5	<5	<0.05	54	<5	7	<5	:5	<5	<5	-:5
522860	23-Dec-2002	02-25-2	BH02-25	0.3-0.4	<5	<5	24	<5	<0.2	<5	<5	<5	< 0.05	73	<5	<5	12	<5	<5	<5	20
522863	23-Dec-2002	02-26-1	BH02-26	0.0-0.1	≪5	<5	14	<5	<0.2	23	13	26	<0.05	460	<5	83	1:5	<:5	<5	<5	33
522864	23-Dec-2002	02-26-2	BH02-26	0.1-0.3	7	<5	6.	<5	<0.2	<5	<5	18	<0.05	19	<5	<5	13	~;5.	<5	<5	-5
522866	23-Dec-2002	02-26-4	BH02-26	0.75-0.85	-:5	<5	13	<5	<0.2	-\$5	20	<5	0.05	19	<5	7	6	<5	<5	<5	<5

WSL Consultar y. Ltd.

A.C.N. 004 752 676 ...B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

Date: 6-Jan-2003 WSL Report No: 522805

LAB NUM	Received	Sample	As	В	Ba	Ве	Cd	Co	Cr	Cu	Hg	Mn	Мо	Ni	Pb	Sb	Se	Sn	Zn
522807	23-Dec-2002	RINS 18/12/02	<0.0005	< 0.001	<0.001	<0.001	< 0.0005	< 0.001	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	< 0.005	<0.001	< 0.0005	< 0.001	< 0.001
522833	23-Dec-2002	RINS 19/12/02	< 0.0005	< 0.001	< 0.001	<0.001	< 0.0005	<0.001	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	< 0.005	< 0.001	< 0.0005	<0.001	<0.001

WSL Consultan v. Ltd.

A.C.N. 004 752 676 ...B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

Date: 6-Jan-2003

WSL Report No: 522805

WSL JobNumber: 15319 Client: Beveridge Williams & Co. Pty. Ltd.

Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Received	Sample	BH No.	Depth (m)	ТРН С6-С9	TPH C10-C14	TPH C15-C28	TPH C29-C36
522846	23-Dec-2002	02-21-1	BH02-21	0.0-0.2	<20	<20	<50	<50
522848	23-Dec-2002	02-21-3	BH02-21	0.9-1.0	<20	<20	<50	<50

WSL Consultant /. Ltd.

A.C.N. 004 752 676 A.B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

Date: 6-Jan-2003

WSL Report No: 522805

LAB NUM	Received	Sample	BH No.	Depth (m)	NAP	ACY	ACE	FLU	PHE	ANT	FLA	PYR	BAA	CHR	BBF	BKF	BAP	DBA	BGP	IPY	TOTAL*
522839	23-Dec-2002	02-18-2	BH02-18	0.4-0.5	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	0.1	-:0.1	-<1
522840	23-Dec-2002	02-18-3	BH02-18	0.6-0.7	<0.1	<0.1	1.0>	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<:0.1	<0.1	+01
522856	23-Dec-2002	02-24-1	BH02-24	0.0-0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	~1
522860	23-Dec-2002	02-25-2	BH02-25	0,3-0,4	<0.1	<0.1	<0.1	<0.1	<0,1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	~t
522864	23-Dec-2002	02-26-2	BH02-26	0.1-0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	≪0,1	<0.1	<0.1	≪1

^{*} Total PAH's refers only to the sum of individual PAH's tested above.

WSL Consultan 7. Ltd.

A.C.N. 004 752 676 ...B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

Date: 6-Jan-2003

WSL Report No: 522805

WSL JobNumber: 15319

Client: Beveridge Williams & Co. Pty. Ltd.

Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Received	Sample	BH No.	Depth (m)	HCB	а-ВНС	LINDANE	HEPTACHLOR	ALDRIN	b-BHC	d-BHC	HEPTACHLOR- EPOXIDE	DDE	DIELDRIN
522805	23-Dec-2002	02-5-1	BH02-5	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
522808	23-Dec-2002	02-6-1	BH02-6	0.0-0.2	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
522814	23-Dec-2002	02-8-1	BH02-8	0.0-0.2	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
522819	23-Dec-2002	02-10-1	BH02-10	0.0-0.2	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
522823	23-Dec-2002	02-12-1	BH02-12	0.0-0.2	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
522828	23-Dec-2002	02-14-1	BH02-14	0.0-0.2	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
522834	23-Dec-2002	02-16-1	BH02-16	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
522838	23-Dec-2002	02-18-1	BH02-18	0.0-0.2	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
522846	23-Dec-2002	02-21-1	BH02-21	0.0-0.2	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
522849	23-Dec-2002	02-22-1	BH02-22	0.0-0.2	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
522852	23-Dec-2002	02-23-1	BH02-23	0.0-0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
522856	23-Dec-2002	02-24-1	BH02-24	0.0-0.2	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
522860	23-Dec-2002	02-25-2	BH02-25	0.3-0.4	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
522864	23-Dec-2002	02-26-2	BH02-26	0.1-0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
											13.00	0.50,540		-0.02

WSL Consultant 7. Ltd.

A.C.N. 004 752 676 ...B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

Date: 6-Jan-2003

WSL Report No: 522805

WSL JobNumber: 15319

Client: Beveridge Williams & Co. Pty. Ltd.

Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Received	Sample	BH No.	Depth (m)	DDD	DDT	ENDRIN	METHOXYCHLOR	CHLORDANE	a-ENDO- SULPHAN	b-ENDO- SULPHAN	ENDOSULPHAN SULPHATE	ENDRIN ALDEHYDE
522805	23-Dec-2002	02-5-1	BH02-5	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
522808	23-Dec-2002	02-6-1	BH02-6	0.0-0.2	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
522814	23-Dec-2002	02-8-1	BH02-8	0.0-0.2	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05
522819	23-Dec-2002	02-10-1	BH02-10	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
522823	23-Dec-2002	02-12-1	BH02-12	0.0-0.2	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
522828	23-Dec-2002	02-14-1	BH02-14	0.0-0.2	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
522834	23-Dec-2002	02-16-1	BH02-16	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
522838	23-Dec-2002	02-18-1	BH02-18	0.0-0.2	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
522846	23-Dec-2002	02-21-1	BH02-21	0.0-0.2	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
522849	23-Dec-2002	02-22-1	BH02-22	0.0-0.2	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
522852	23-Dec-2002	02-23-1	BH02-23	0.0-0.2	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
522856	23-Dec-2002	02-24-1	BH02-24	0.0-0.2	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05
522860	23-Dec-2002	02-25-2	BH02-25	0.3-0.4	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
522864	23-Dec-2002	02-26-2	BH02-26	0.1-0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05

WSL Consultan v. Ltd.

96.3

<5

105

92.9

<5

91.3

<.5

95.0

< 0.2

A.C.N. 004 752 676 A.B.N. 49 004 752 676 2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

QUALITY ASSURANCE REPORT

Date: 6-Jan-2003 WSL Report No: 522805

LAB NUM	Bo Constant		20000																		
LAB NUM	Reference	Sample	BH No.	Depth (m)	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg	Mn	Mo	Ni	Pb	Sb	Se	Sn	Zn
523728	23-Dec-2002	BLANK			<5	<5	<5	<5	<0.2	<5	<5	<5	<0.05	<5	<5	<5	<5	<5	≤5	<5	<5
524191	(Duplicate of 5228	805)			<5	<5	15	<5	<0.2	<5	5	<5	0.46	31	<5	<5	12	25	~		
522805	23-Dec-2002	02-5-1	BH02-5	0.0-0.2	<5	<5	14	<5	< 0.2	<5	6	<5	0.49	32	<5	<5	12 12	<5	<5	<5	12
% RPD				777.42	0	0	6.9	0	0	0	18.2	0	6.3	3.2	0	0	0	<5 0	<5 0	<5 0	0
524193	(Duplicate of 5228	(20)			<5	<5	<5	<5	<0.2	<5	<5	<5	< 0.05	7	<5						
522820	23-Dec-2002	02-10-2	BH02-10	0.4-0.5	<5	<5	<5	<5	< 0.2	<5	<5	<5	< 0.05	7	<5	<5	<5	<5	<5	<5	<5
% RPD					0	0	0	0	0	0	0	0	0.03	0	0	<5 0	<5 0	<5 0	<5 0	<5 0	<:5 0
524195	(Duplicate of 5228	(34)			<5	<5	12	<5	0.2	<5	11	<5	0.69	33		-6	12	i i			
522834	23-Dec-2002	02-16-1	BH02-16	0.0-0.2	<5	<5	12	<5	0.3	<5	11	<5	0.68	34	<5 <5	<5	13	<5	<5	<5	5
% RPD		1000000		0.0 0.2	0	0	0	0	40.0	0	0	0	1.5	3.0	0	<5 0	16 20.7	<5 0	<5 0	0.	5
524197	(Duplicate of 5228	(49)			<5	<5	<5	<5	<0.2	<5	<5	<5	<0.05	6	<5	<5	7	25	36		
522849	23-Dec-2002	02-22-1	BH02-22	0.0-0.2	<5	<5	<5	<5	<0.2	<5	<5	<5	< 0.05	7	<5	<5	7	<5 <5	<5	<5	<
% RPD					0	0	0	0	0	0	0	0	0	15.4	0	0	0	0	<5 0	<5	<5 0
524192	(Spike of 522805)				94	80	110	84	85	85	82	81	1.3	110	81	85	91	87	77	82	98
Expected					82	85	94	80	80	82	86	84	1.3	110	80	83	92	80	80	81	92
6 Recovery					115	94.1	120	105	106	104	95.0	96.4	100	100	101	102	98.8	109	96.3	101	
522805	23-Dec-2002	02-5-1	BH02-5	0.0-0.2	<5	<5	14	<5	<0.2	<5	6	<5	0.49	32	<5	<5	12	<5	<5	<5	10
524194	(Spike of 522820)				80	86	70	76	77	83	88	71	0.85	84	77	79	82	83	76	79	81
Expected					80	83	83	80	80	81	83	80	0.80	87	81	81	83	80	80	81	80
Recovery					100	104	84.3	95.0	96.3	102	106	88.8	106	96.3	95.1	97.5	98.8	104	95.0	97.5	10
522820	23-Dec-2002	02-10-2	BH02-10	0.4-0.5	<5	≤5	<5	<5	< 0.2	<5	<5	<5	<0.05	7	<5	<5	<5	<5	<5	<5	<3
524196	(Spike of 522834)				81	93	83	75	78	92	100	76	1.4	120	78	88	95	83	82	82	84
Expected					82	84	92	80	80	85	91	84	1.5	110	81	84	96	80	80	81	85
Recovery					98.8	111	88.8	93.8	97.5	108	111	90.5	87.8	113	96.3	105	98.8	104	103	101	98.
522834	23-Dec-2002	02-16-1	BH02-16	0.0-0.2	<5	<:5	12	<5	0.3	<:5	11	. <5	0.68	34	<5	<5	16	<5	<5	<5	5
524198	(Spike of 522849)				77	85	79	73	76	84	89	74	0.81	87	75	80	89	82	80	79	77
Expected					80	81	85	80	80	80	82	83	0.80	87	81	81	87	80	80	81	80
Recovery					012	100	00.0	01.0						100000					00	U.I	- 4

23-Dec-2002

02-22-1

BH02-22

0.0-0.2

% Recovery

522849

105

<5

89.2

<5

101

< 0.05

100

92.6

<5

98.8

<5

103

103

<5

100

97.5

.5

96.3

-:5

109

<5

WSL Consultan y. Ltd.
A.C.N. 004 752 676 ...B.N. 49 004 752 676
2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294 Email: wsl@wsl.com.au Web: www.wsl.com.au

QUALITY ASSURANCE REPORT

Date: 6-Jan-2003 WSL Report No: 522805

WSL JobNumber: 15319 Client: Beveridge Williams & Co. Pty. Ltd. Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Reference	Sample	BH No.	Depth (m)	TPH C6-C9	TPH C10-C14	TPH C15-C28	TPH C29-C36
523728	23-Dec-2002	BLANK			<20	<20	<50	<50
523729 Expected	(Spike of 523728)						280 310	
% Recovery 523728	23-Dec-2002	QC SPIKE					90.3 <50	

WSL Consultan: v. Ltd.

A.C.N. 004 752 676 ...B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

QUALITY ASSURANCE REPORT

Date: 6-Jan-2003 WSL Report No: 522805 WSL JobNumber: 15319

LAB NUM	Reference	Sample	BH No.	Depth (m)	NAP	ACY	ACE	FLU	PHE	ANT	FLA	PYR	BAA	CHR	BBF	BKF	BAP	DBA	BGP	IPY	TOTAL*
523728	23-Dec-2002	BLANK			<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
523751 522856	(Duplicate of 52 23-Dec-2002	22856) 02-24-1	BH02-24	0.0-0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	≤0.1	<1
% RPD				4476.812	0	0	0	0	0	0	0	0	0	0	0	<0.1 0	<0.1 0	<0.1 0	<0.1	<0.1 0	0
523729 Expected	(Spike of 52372)	8)			1.1	1.1	1.1 1.3	1.0 1.3	1.1 1.3	1.1	1.2	1.3 1.3	1,4	1.2	1.1	1.3	1.2	1,1	1.1	1.3	19
% Recovery 523728	23-Dec-2002	QC SPIKE			84.6 -:0.1	84.6 <0.1	84.6 <0.1	76.9 <0.1	84.6	84.6	92.3	100	108	1.3 92.3	1.3 84.6	1.3	1,3 92.3	1.3 84.6	1.3 84.6	1.3	20 95.0
523752	(Spike of 52285)								<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	:0.1	<1
Expected	(apike of 32203)	0)			1.2 1.4	1.4	1.3 1.4	1.3	1.3	1.4	1.5	1.5 1.4	1.4	1.4	1.3	1.5 1.4	1.4	1.4	1.4 1.4	1.3	22 22
% Recovery 522856	23-Dec-2002	02-24-1	BH02-24	0.0-0.2	85.7 <0.1	100 <0.1	92.9 <0.1	92.9 <0.1	92,9 <0.1	100 <0.1	107 <0.1	107	100	100 <0.1	92.9 <0.1	107 <0.1	100	100 <0.1	100 <0.1	92.9 <0.1	100

^{*} Total PAH's refers only to the sum of individual PAH's tested above.

WSL Consultan y. Ltd.

A.C.N. 004 752 676 ...B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

QUALITY ASSURANCE REPORT

Date: 6-Jan-2003 WSL Report No: 522805

WSL JobNumber: 15319 Client: Beveridge Williams & Co. Pty. Ltd. Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Reference	Sample	BH No.	Depth (m)	HCB	a-BHC	LINDANE	HEPTACHLOR	ALDRIN	b-BHC	d-BHC	HEPTACHLOR- EPOXIDE	DDE	DIELDRIN
523728	23-Dec-2002	BLANK			<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
523750	(Duplicate of 522	805)			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	50.05	-0.05	60.00
522805	23-Dec-2002	02-5-1	BH02-5	0.0-0.2	< 0.05	< 0.05	< 0.05					< 0.05	< 0.05	< 0.05
% RPD			27.02 2	0.0 0.2	-0.03			<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
74 144 25					0	0	0	0	0	0	0	0	0	0
523751	(Duplicate of 522)	856)			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	-0.05	c0.05
522856	23-Dec-2002	02-24-1	BH02-24	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05				<0.05	< 0.05	< 0.05
% RPD	22/2/2/2/2/2		DITUL ZI	0.0 0.2	0.03				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
70 KG D					Û	0	0	0	0	0	0	0	0	0
523729	(Spike of 523728)				2.1	2.2	2.1		1.4	2.2	2.5	1.3	1.2	1.2
Expected	Andrew as Think and				2.5	2.5	2.5		1.3	2.5				1.2
% Recovery					84.0	88.0					2.5	1.3	1.3	1.3
	23-Dec-2002	QC SPIKE					84.0		108	88.0	100	100	92.3	92.3
323120	23-000-2002	QC SFIRE			< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
523752	(Spike of 522856)				1.3	1.3	1.3	1.2	1.2	1.0	en.		1.4	0.5
Expected	164				1.4	1.4			1.3	1.2	1.1	1.3	1.3	1.3
% Recovery							1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
522856	23-Dec-2002	02-24-1	D1102 24	0.0.0.0	92.9	92.9	92.9	85.7	92.9	85.7	78.6	92.9	92.9	92.9
322030	23-DEC-2002	UZ-Z4-1	BH02-24	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

WSL Consultar v. Ltd.

A.C.N. 004 752 676 A.B.N. 49 004 752 676

2-8 Harvey Street, Richmond, Victoria 3121, Australia Telephone: +61 3 9429 4666 Facsimile: +61 3 9429 2294

Email: wsl@wsl.com.au Web: www.wsl.com.au

QUALITY ASSURANCE REPORT

Date: 6-Jan-2003

WSL Report No: 522805

WSL JobNumber: 15319 Client: Beveridge Williams & Co. Pty. Ltd.

Job Reference: D8610 - OAKLEIGH STH PRIMARY SCHOOL

LAB NUM	Reference	Sample	BH No.	Depth (m)	DDD	DDT	ENDRIN	METHOXYCHLOR	CHLORDANE	a-ENDO- SULPHAN	b-ENDO- SULPHAN	ENDOSULPHAN SULPHATE	ENDRIN ALDEHYDE
523728	23-Dec-2002	BLANK			< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
523750	(Duplicate of 522	805)			<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
522805	23-Dec-2002	02-5-1	BH02-5	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
% RPD					0	0	0	0	0	0	0	0	0
523751	(Duplicate of 522	856)			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
522856	23-Dec-2002	02-24-1	BH02-24	0.0-0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
% RPD					0	0	0	0	0	0	0	0	0
523729	(Spike of 523728)				1.0				2.7	1.2	1.2	1.2	1.2
Expected					1.3				2.5	1.3	1.3	1.3	1.3
% Recovery					76.9				108	92.3	92.3	92.3	92.3
523728	23-Dec-2002	QC SPIKE			< 0.05				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
523752	(Spike of 522856)				1.5		1.3		2.8	1.3	1.3		1.3
Expected	0.00				1.4		1.4		2.8	1.4	1.4		1.4
% Recovery	,				107		92.9		100	92.9	92.9		92.9
522856	23-Dec-2002	02-24-1	BH02-24	0.0-0.2	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05		< 0.05

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT:

MR DARREN PENDERGAST

CLIENT:

BEVERIDGE WILLIAMS & CO P/L

ADDRESS:

P.O.BOX 2205

CAULFIELD JUNCTION VIC 3161

ORDER No.:

D8610

PROJECT:

OAKLEIGH SOUTH

BATCH:

SUB BATCH:

LABORATORY:

DATE RECEIVED: DATE COMPLETED:

SAMPLE TYPE:

No. of SAMPLES:

EM15149

0

MELBOURNE

18/12/2002 03/01/2003

SOIL

1

COMMENTS

All analysis and Laboratory QC conducted in accordance with Schedule B(3) NEPM Guideline on Laboratory Analysis of Potentially Contaminated Soil (December 1999). Samples analysed on an as received basis.

Results reported on a dry weight basis.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: MELBOURNE

Address

Unit 6 / Adamco Business Park

2 Sarton Road Clayton VIC 3168

Phone: 61-3-9538 4444

Fax:

61-3-9538 4400

Email:

keith.evans@alsenviro.com

Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland Hong Kong Singapore Kuala Lumpur

AMERICAS

Vancouver Santiago Antofagasta This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

of 6

Batch:

EM15149

Sub Batch:

0

Date of Issue: 03/01/2003

Client:

BEVERIDGE WILLIAMS & CO P/L

Client Reference:

OAKLEIGH SOUTH

		_				SAI	MPLE IDENTIFI	CATION			
		Laborat	ory I.D.	1			The Later Co				
		Date Sa	mpled	18/12/2002							
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	02-5-1A							
EA-055	Moisture Content (dried @ 103'C)	%	0.1	4.9							-
EG-005T	Arsenic - Total	mg/kg	1	3					1111111		
EG-005T	Boron - Total	mg/kg	1	6							
EG-005T	Barium - Total	mg/kg	1	12		Į.					
EG-005T	Beryllium - Total	mg/kg	1	<1							
EG-005T	Cadmium - Total	mg/kg	1	<1							
EG-005T	Cobalt - Total	mg/kg	1	1							
EG-005T	Chromium - Total	mg/kg	1	3							
EG-005T	Copper - Total	mg/kg	1	4	010 1		f				
EG-005T	Manganese - Total	mg/kg	1	23							
EG-005T	Molybdenum - Total	mg/kg	1	<1							
EG-005T	Nickel - Total	mg/kg	1	2							
EG-005T	Lead - Total	mg/kg	1	11							
EG-005T	Antimony - Total	mg/kg	1	<1							
EG-005T	Selenium - Total	mg/kg	1	<1		11/4					
EG-005T	Tin - Total	mg/kg	1	<1						1	
EG-005T	Zinc - Total	mg/kg	1	19							
EG-035T	Mercury - Total	mg/kg	0.1	0.4							

ALS Environmental

QUALITY CONTRUL REPORT

EM15149 0 03/01/2003

Batch: Sub Batch:

BEVERIDGE WILLIAMS & CO P/L

OAKLEIGH SOUTH

Client Reference:

Client:

Date of Issue:

							SAMPLE IDENTIFICATION
		Laboratory I.D.	λy I.D.	200	201	202	
		Date Sampled	npled	18/12/2002	18/12/2002	18/12/2002	
			5	METHOD	LCS	MS	
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	BLANK			
							CHECKS AND SPIKES
EA-055	Moisture Content (dried @ 103'C)	%	0.1	Í	1	1	
EG-005T	Arsenic - Total	mg/kg	_	Δ	111%	95.0%	
EG-005T	Boron - Total	mg/kg	_	4	1	92.0%	
EG-005T	Barium - Total	mg/kg	4	4	99.0%	Not Det'd	
EG-005T	Beryllium - Total	mg/kg	_	4	1	ı	
EG-005T	Cadmium - Total	mg/kg	_	4	102%	95.0%	
EG-005T	Cobalt - Total	mg/kg	_	7	1	94.0%	
EG-005T	Chromium - Total	mg/kg	4	7	97.0%	109%	
EG-005T	Copper - Total	mg/kg	4	4	98.0%	96.0%	
EG-005T	Manganese - Total	mg/kg	_	4	1	97.0%	
EG-005T	Molybdenum - Total	mg/kg	_	7	1	86.0%	
EG-005T	Nickel - Total	mg/kg	4	4	99.0%	94.0%	
EG-005T	Lead - Total	mg/kg		4	99.0%	103%	
EG-005T	Antimony - Total	mg/kg	4	4	l	1	
EG-005T	Selenium - Total	mg/kg	_	4	1	1	
EG-005T	Tin - Total	mg/kg	_	4	f	Ì	
EG-005T	Zinc - Total	mg/kg		4	94.0%	81.0%	
EG-035T	Mercury - Total	mg/kg	0.1	<0.1	102%	82.0%	

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT:

MR DARREN PENDERGAST

CLIENT:

BEVERIDGE WILLIAMS & CO P/L

ADDRESS:

P.O.BOX 2205

CAULFIELD JUNCTION VIC 3161

ORDER No .:

D8610

PROJECT:

OAKLEIGH SOUTH

BATCH:

SUB BATCH:

LABORATORY:

DATE RECEIVED:

DATE COMPLETED: SAMPLE TYPE:

No. of SAMPLES:

EM15149

MELBOURNE

18/12/2002

03/01/2003

SOIL

1

COMMENTS

All analysis and Laboratory QC conducted in accordance with Schedule B(3) NEPM Guideline on Laboratory Analysis of Potentially Contaminated Soil (December 1999). Samples analysed on an as received basis.

Results reported on a dry weight basis.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: MELBOURNE

Address

Unit 6 / Adamco Business Park

2 Sarton Road Clayton VIC 3168

Phone: 61-3-9538 4444

Fax:

61-3-9538 4400

keith.evans@alsenviro.com

Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland

Hong Kong Singapore Kuala Lumpur Bogor Mumbai

AMERICAS

Vancouver Santiago Antofagasta This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Batch:

EM15149

Sub Batch:

1

Date of Issue: Client: 03/01/2003

Jiletit.

BEVERIDGE WILLIAMS & CO P/L

Client Reference:

OAKLEIGH SOUTH

					SAMPL	E IDENTIFICAT	ION		
		Laborat	ory I.D.	1					
		Date Sa	ampled	18/12/2002					
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	02-5-1A					
EA-055 EP-068A-SS	Moisture Content (dried @ 103'C) ORGANOCHLORINE PESTICIDES	%	0.1	4.9					
EP-068A-SS	alpha-BHC	mg/kg	0.05	<0.05					
P-068A-SS	нсв	mg/kg	0.05	<0.05					
EP-068A-SS	beta-BHC & gamma-BHC	mg/kg	0.1	<0.1					
EP-068A-SS	delta-BHC	mg/kg	0.05	<0.05					
EP-068A-SS	Heptachlor	mg/kg	0.05	<0.05					l l
P-068A-SS	Aldrin	mg/kg	0.05	<0.05	1	N.			
P-068A-SS	Heptachlor epoxide	mg/kg	0.05	<0.05	1				
EP-068A-SS	Chlordane - trans	mg/kg	0.05	<0.05					
EP-068A-SS	Endosulfan 1	mg/kg	0.05	<0.05					
EP-068A-SS	Chlordane - cis	mg/kg	0.05	<0.05					
EP-068A-SS	Dieldrin	mg/kg	0.05	0.11		1			
EP-068A-SS	DDE	mg/kg	0.05	<0.05					
EP-068A-SS	Endrin	mg/kg	0.05	<0.05			1	1	
EP-068A-SS	Endosulfan 2	mg/kg	0.05	<0.05					
P-068A-SS	DDD	mg/kg	0.05	<0.05				1	
P-068A-SS	Endrin aldehyde	mg/kg	0.05	<0.05			1		1
P-068A-SS	Endosulfan sulfate	mg/kg	0.05	<0.05					
P-068A-SS	DDT	mg/kg	0.2	<0.2					
P-068A-SS	Endrin ketone	mg/kg	0.05	<0.05					
P-068A-SS P-068S-SS	Methoxychlor ORGANOCHLORINE PESTICIDE SURR	mg/kg OGATE	0.2	<0.2					
P-068S-SS	Dibromo-DDE	%	1	108					

Batch:

EM15149

Sub Batch:

1

Date of Issue:

03/01/2003

Client:

BEVERIDGE WILLIAMS & CO P/L

Client Reference:

OAKLEIGH SOUTH

					7			SAMPLE IDE	NTIFICATION		
		Laborate	ory I.D.	100	101	102	103	104			
		Date Sa	mpled	18/12/2002	18/12/2002	18/12/2002	18/12/2002	18/12/2002			
		-	5.43%	METHOD	VOCOPS311	VOCOPS311	VOCOPS311	VOCOPS311			- 111
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	BLANK	SCS	DCS	MS	MSD			
							(CHECKS AND S	PIKES		
EA-055	Moisture Content (dried @ 103'C)	%	0.1	-							
EP-068A-SS	ORGANOCHLORINE PESTICIDES										111
EP-068A-SS	alpha-BHC	mg/kg	0.05	<0.05	105%	118%				1	
EP-068A-SS	нсв	mg/kg	0.05	<0.05	111%	121%		1			
EP-068A-SS	beta-BHC & gamma-BHC	mg/kg	0.1	<0.1	107%	125%	110%	112%			
EP-068A-SS	delta-BHC	mg/kg	0.05	< 0.05	109%	121%	1.22				
EP-068A-SS	Heptachlor	mg/kg	0.05	<0.05	110%	120%	121%	114%			
EP-068A-SS	Aldrin	mg/kg	0.05	<0.05	109%	120%	97.4%	94.2%			18
EP-068A-SS	Heptachlor epoxide	mg/kg	0.05	<0.05	111%	119%					11
EP-068A-SS	Chlordane - trans	mg/kg	0.05	<0.05	115%	121%					
EP-068A-SS	Endosulfan 1	mg/kg	0.05	<0.05	116%	119%					1
EP-068A-SS	Chlordane - cis	mg/kg	0.05	< 0.05	115%	120%					11
EP-068A-SS	Dieldrin	mg/kg	0.05	<0.05	115%	124%	149%	148%			
EP-068A-SS	DDE	mg/kg	0.05	<0.05	115%	120%		-		1	
EP-068A-SS	Endrin	mg/kg	0.05	<0.05	119%	124%	154%	153%		110	
EP-068A-SS	Endosulfan 2	mg/kg	0.05	<0.05	135%	123%					
EP-068A-SS	DDD	mg/kg	0.05	<0.05	117%	121%					1,42
EP-068A-SS	Endrin aldehyde	mg/kg	0.05	<0.05	119%	122%					
EP-068A-SS	Endosulfan sulfate	mg/kg	0.05	<0.05	121%	122%					
EP-068A-SS	DDT	mg/kg	0.2	<0.2	126%	120%	245%	228%			
EP-068A-SS	Endrin ketone	mg/kg	0.05	<0.05	117%	121%					
EP-068A-SS	Methoxychlor	mg/kg	0.2	<0.2	127%	111%					
EP-068S-SS	ORGANOCHLORINE PESTICIDE SURR	OGATE									
EP-068S-SS	Dibromo-DDE	%	1	125	106	113	88	84			

ALS Environmental

ORGANICS QUALITY CONTROL REPORT

BATCH NO: EM15149

DATE BATCH RECEIVED:

18/12/2002

CLIENT: Beveridge Williams

DATE BATCH COMPLETED: 3/01/2003

PROJECT: Oakleigh South

Method	Test	Matrix	Method	Reference	QC Lot Number		Date
Code			Extraction	Analysis		Samples Extracted	Samples Analysed
EP-068	Pesticides	Soil	Tumbler	USEPA 8270B	VOCOPS311	24/12/2002	24/12/2002

Where applicable, internal standards are added to sample extracts prior to instrumental analysis. Absolute peak areas and retention times fall within the criteria specified in the individual methods. Continuing Calibration (CC) standards are run at the frequency of 1 in every 20 samples.

Abbreviations: SV = semivolatile, V = volatile

^{*:} In-house methods

		Al	S EP-06	68 : Pesti	cides				
QC LOT No. :	VOCOPS	5311			ANALYST	S.MCG	RATH		
MATRIX:	Soils								
	Blank	Spike		SPIKE QC	RESULTS		Co	ntrol Lim	its
COMPOUND	Conc	Level	SCS Rec.	DCS Rec.	Average Rec.	RPD	R	ec.	RPD
	mg/kg	mg/kg	0	%	%	%	Low	High	%
EP068A : OC Pesticid	es								
a-BHC	<0.2	0.25	105	118	112	11.7	67.5	126	0 - 20
НСВ	<0.2	0.25	111	121	116	8.62	66.4	128	0 - 20
b- & g-BHC	<0.4	0.5	107	125	116	15.5	69.3	129	0 - 20
d-BHC	<0.2	0.25	109	121	115	10.4	77.4	128	0 - 20
Heptachlor	<0.2	0.25	110	120	115	8.7	71.7	129	0 - 20
Aldrin	<0.2	0.25	109	120	115	9.61	78.3	129	0 - 20
Heptachlor epoxide	<0.2	0.25	111	119	115	6.96	73.9	133	0 - 20
Chlordane peak no 1	<0.2	0.25	115	121	118	5.08	76.7	134	0 - 20
Endosulfan 1	<0.2	0.25	116	119	118	2.55	76	132	0 - 20
Chlordane peak no. 2	<0.2	0.25	115	120	118	4.26	73.5	135	0 - 20
Dieldrin	<0.2	0.25	115	123	119	6.72	78.5	134	0 - 20
DDE	<0.2	0.25	115	120	118	4.26	81.3	127	0 - 20
Endrin	<0.2	0.25	119	124	122	4.12	71.5	139	0 - 20
Endosulfan 2	<0.2	0.25	135	123	129	9.3	76.7	131	0 - 20
DDD	<0.2	0.25	117	121	119	3.36	79.1	129	0 - 20
Endrin aldehyde	<0.2	0.25	119	122	121	2.49	75.7	132	1 - 20
Endosulfan sulfate	<0.2	0.25	121	122	122	0.82	72.7	139	0 - 20
TOO	<0.2	0.25	126	120	123	4.88	66.4	136	0 - 20
Endrin ketone	<0.2	0.25	117	121	119	3.36	67.6	136	0 - 20
Methoxychlor	<0.2	0.25	127	111	119	13.4	63.9	130	0 - 20

COMMENTS:

¹⁾ The recovery control limits are based on ALS laboratory statistical data. (Method QWI-ORG/07)

²⁾ The control limits on RPD (relative percent deviation) are fixed.

^{3) * :} Recovery or RPD falls outside of the recommended control limits.

BATCH QUALITY CONTROL -- DUPLICATE

ALS EP-068: Pesticides

QC LOT No. :

VOCOPS311

MATRIX:

Soils

ANALYST:

S.MCGRATH

			OC DUPLICATE	RESULTS	
COMPOUND	LOR	EM15059 23	EM15059 23D	RPD	Cont. Limit
	mg/kg	mg/kg	mg/kg		%
EP068A : OC Pesticides					
a-BHC	0.025	<0.025	<0.025	n/a	
HCB	0.025	<0.025	<0.025	n/a	
b- & g-BHC	0.05	< 0.05	<0.05	n/a	
d-BHC	0.025	<0.025	<0.025	n/a	
Heptachlor	0.025	<0.025	<0.025	n/a	
Aldrin	0.025	<0.025	<0.025	n/a	
Heptachlor epoxide	0.025	<0.025	<0.025	n/a	
Chlordane peak no 1	0.025	<0.025	<0.025	n/a	-
Endosulfan 1	0.025	< 0.025	<0.025	n/a	
Chlordane peak no. 2	0.025	<0.025	<0.025	n/a	
Dieldrin	0.025	<0.025	<0.025	n/a	
DDE	0.025	< 0.025	<0.025	n/a	
Endrin	0.025	< 0.025	<0.025	n/a	
Endosulfan 2	0.025	<0.025	<0.025	n/a	
DDD	0.025	<0.025	<0.025	n/a	
Endrin aldehyde	0.025	<0.025	<0.025	n/a	
Endosulfan sulfate	0.025	<0.025	<0.025	n/a	
DDT	0.1	<0.1	<0.1	n/a	
Endrin ketone	0.025	<0.025	<0.025	n/a	
Methoxychlor	0.1	<0.1	<0.1	n/a	
EP068S : OC Surrogate			C - G16-13		
Dibromo-DDE	1%	92.3%	107%	14.8	0 - 20

Note: The permitted range for RPD (relative percent deviation) is specified in ALS Method QWI-EN/38 and is dependent on the magnitude of results in comparison to the level of reporting:

Result < 10 times LOR, no limit.

Result between 10 and 20 times LOR, 0% - 50%.

Results > 20 times LOR, 0% - 20%.

	ALS EP-068	: Semiv	olatile C	Organic Co	mpounds		
QC LOT No. :	VOCOPS	311			ANALYST:	S.MCG	RATH
MATRIX:	Soils				Sample ID:	E	EM15059-1
	Sample	Spike		SPIKE Q	C RESULTS		Cont. Limit
COMPOUND	Results	Level	MS Rec.	MSD Rec.	Average Rec.	RPD	RPD
	mg/kg	mg/kg	%	%	%	%	%
EP068A : OC Pesticides							
o- & g-BHC	< 0.05	0.25	110	112	111	1.8	0 - 20
Heptachlor	<0.025	0.25	121	114	118	5.96	0 - 20
Aldrin	<0.025	0.25	97.4	94.2	95.8	3.34	0 - 20
Dieldrin	<0.025	0.25	149	148	149	0.673	0 - 20
Endrin	<0.025	0.25	154	153	154	0.651	0 - 20
ODT	<0.1	0.25	245	228	237	7.19	0 - 20

COMMENTS:

- 1) The RPD control limits are fixed.
- 2) *: RPD falls outside the recommended control limit.

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT:

MR DARREN PENDERGAST

CLIENT:

BEVERIDGE WILLIAMS & CO P/L

ADDRESS:

P.O.BOX 2205

CAULFIELD JUNCTION VIC 3161

ORDER No.:

D8610

PROJECT:

OAKLEIGH SOUTH

BATCH:

SUB BATCH:

LABORATORY:

DATE RECEIVED:

DATE COMPLETED:

SAMPLE TYPE: No. of SAMPLES: SOIL

0

1

EM15150

MELBOURNE

19/12/2002

09/01/2003

COMMENTS

All analysis and Laboratory QC conducted in accordance with Schedule B(3) NEPM Guideline on Laboratory Analysis of Potentially Contaminated Soil (December 1999). Samples as received digested by USEPA method 200.2 (modified) prior to the determination of metals. Results

reported on a dry weight basis.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: MELBOURNE

Address

Unit 6 / Adamco Business Park

2 Sarton Road

Clayton VIC 3168

Phone: 61-3-9538 4444

Fax:

61-3-9538 4400

Email:

keith.evans@alsenviro.com

Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland

Hong Kong Singapore Kuala Lumpur **AMERICAS**

Vancouver Santiago Antofagasta This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Batch:

EM15150

Sub Batch:

0

09/01/2003

Date of Issue: Client:

BEVERIDGE WILLIAMS & CO P/L

Client Reference:

OAKLEIGH SOUTH

CERTIFICATE OF NALYSIS

		£			SAMPLE IDENTIFICATION
		Laborat	ory I.D.	1	
		Date Sa	mpled	19/12/2002	
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	02-24-1A	
EA-055	Moisture Content (dried @ 103°C)	%	0.1	6.5	
EG-005T	Arsenic - Total	mg/kg	1	6	
EG-005T	Boron - Total	mg/kg	1	<1	
EG-005T	Barium - Total	mg/kg	1	24	
EG-005T	Beryllium - Total	mg/kg	1	<1	
EG-005T	Cadmium - Total	mg/kg	1	<1	
EG-005T	Cobalt - Total	mg/kg	11	7	
EG-005T	Chromium - Total	mg/kg	1	20	
EG-005T	Copper - Total	mg/kg	1	11	
EG-005T	Manganese - Total	mg/kg	1	195	
EG-005T	Molybdenum - Total	mg/kg	1	1	
EG-005T	Nickel - Total	mg/kg	1	29	
EG-005T	Lead - Total	mg/kg	1	10	
EG-005T	Antimony - Total	mg/kg	1	<1	
EG-005T	Selenium - Total	mg/kg	1	1	
EG-005T	Tin - Total	mg/kg	1	<1	
EG-005T	Zinc - Total	mg/kg	1	25	
EG-035T	Mercury - Total	mg/kg	0.1	< 0.1	

Batch:

EM15150

Sub Batch:

0

Date of Issue: 09/01/2003

Client:

BEVERIDGE WILLIAMS & CO P/L

Client Reference:

OAKLEIGH SOUTH

		1 1 1	1.5				SAMPL	E IDENTIFICA	TION		
		Laborat		200	201	202					
		Date Sa	mpled	19/12/2002	19/12/2002	19/12/2002					
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	METHOD BLANK	LCS	MS					
						*	CHECKS	AND SPIKES			
EA-055	Moisture Content (dried @ 103'C)	%	0.1	<0.1							
EG-005T	Arsenic - Total	mg/kg	1	<1	103%	82.0%					
EG-005T	Boron - Total	mg/kg	1	<1	****						
EG-005T	Barium - Total	mg/kg	1	<1	96.0%	117%				1	
EG-005T	Beryllium - Total	mg/kg	1	<1		81.0%					1
EG-005T	Cadmium - Total	mg/kg	1	<1	97.0%	98.0%					
EG-005T	Cobalt - Total	mg/kg	1	<1		101%					
EG-005T	Chromium - Total	mg/kg	1	<1	98.0%	100%					
EG-005T	Copper - Total	mg/kg	1	<1	98.0%	119%					
EG-005T	Manganese - Total	mg/kg	1	<1		95.0%	8				
EG-005T	Molybdenum - Total	mg/kg	1	<1		83.0%				Į.	1
EG-005T	Nickel - Total	mg/kg	1	<1	97.0%	105%					
EG-005T	Lead - Total	mg/kg	1	<1	101%	99.0%					
EG-005T	Antimony - Total	mg/kg	1	<1					1		
EG-005T	Selenium - Total	mg/kg	1	<1		92.0%			4		
EG-005T	Tin - Total	mg/kg	1	<1							
EG-005T	Zinc - Total	mg/kg	1	<1	92.0%	99.0%					
EG-035T	Mercury - Total	mg/kg	0.1	<0.1	101%	108%					

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT:

MR DARREN PENDERGAST

CLIENT:

BEVERIDGE WILLIAMS & CO P/L

ADDRESS:

P.O.BOX 2205

CAULFIELD JUNCTION VIC 3161

ORDER No .:

D8610

PROJECT:

OAKLEIGH SOUTH

BATCH:

SUB BATCH:

LABORATORY:

DATE RECEIVED:

DATE COMPLETED: SAMPLE TYPE:

No. of SAMPLES:

EM15150

MELBOURNE

19/12/2002

09/01/2003

SOIL

1

COMMENTS

All analysis and Laboratory QC conducted in accordance with Schedule B(3) NEPM Guideline on Laboratory Analysis of Potentially Contaminated Soil (December 1999). Samples analysed on an as received basis.

Results reported on a dry weight basis.

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: MELBOURNE

Address

Unit 6 / Adamco Business Park

2 Sarton Road Clayton VIC 3168

Phone: 61-3-9538 4444

Fax:

61-3-9538 4400

Email:

keith.evans@alsenviro.com

Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland Hong Kong Singapore Kuala Lumpur Mumbai

AMERICAS

Vancouver Santiago Antofagasta This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Batch:

EM15150

Sub Batch: Date of Issue:

1

09/01/2003

Client:

BEVERIDGE WILLIAMS & CO P/L

Client Reference:

OAKLEIGH SOUTH

					SAMPLE IDENTIFICATION
		Laborat	ory I.D.	1	
		Date Sa	impled	19/12/2002	
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	02-24-1A	
EA-055 E P-068A-SS	Moisture Content (dried @ 103'C) ORGANOCHLORINE PESTICIDES	%	0.1	6.5	
EP-068A-SS	alpha-BHC	mg/kg	0.05	<0.05	
EP-068A-SS	HCB	mg/kg	0.05	<0.05	
EP-068A-SS	beta-BHC & gamma-BHC	mg/kg	0.1	<0.1	
EP-068A-SS	delta-BHC	mg/kg	0.05	<0.05	
EP-068A-SS	Heptachlor	mg/kg	0.05	<0.05	
EP-068A-SS	Aldrin	mg/kg	0.05	<0.05	
EP-068A-SS	Heptachlor epoxide	mg/kg	0.05	<0.05	
EP-068A-SS	Chlordane - trans	mg/kg	0.05	<0.05	
EP-068A-SS	Endosulfan 1	mg/kg	0.05	<0.05	
EP-068A-SS	Chlordane - cis	mg/kg	0.05	<0.05	
EP-068A-SS	Dieldrin	mg/kg	0.05	<0.05	
EP-068A-SS	DDE	mg/kg	0.05	<0.05	
EP-068A-SS	Endrin	mg/kg	0.05	<0.05	
EP-068A-SS	Endosulfan 2	mg/kg	0.05	<0.05	
EP-068A-SS	DDD	mg/kg	0.05	<0.05	
EP-068A-SS	Endrin aldehyde	mg/kg	0.05	<0.05	
EP-068A-SS	Endosulfan sulfate	mg/kg	0.05	<0.05	
EP-068A-SS	DDT	mg/kg	0.2	<0.2	
P-068A-SS	Endrin ketone	mg/kg	0.05	<0.05	
EP-068A-SS EP-068S-SS	Methoxychlor ORGANOCHLORINE PESTICIDE SURR	mg/kg OGATE	0.2	<0.2	
EP-068S-SS	Dibromo-DDE	%	1	76	

Batch:

EM15150

Sub Batch: Date of Issue:

1

09/01/2003

Client:

BEVERIDGE WILLIAMS & CO P/L

Client Reference:

OAKLEIGH SOUTH

QUALITY CONTROL REPORT

								SAMPLE ID	ENTIFICATION		
		Laborat		1	100	101	102	103	104		
		Date Sa	impled	19/12/2002	19/12/2002	19/12/2002	19/12/2002	19/12/2002	19/12/2002		
METHOD	ANALYOIG DECODIDEION	100.000	100	02-24-1A	METHOD	VOCOPS311	VOCOPS311	VOCOPS311	VOCOPS311		
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	CHK	BLANK	SCS	DCS	MS	MSD	10.0	
							(CHECKS AND	SPIKES		
EA-055	Moisture Content (dried @ 103'C)	%	0.1	6.5	-	- C	-				
P-068A-SS	ORGANOCHLORINE PESTICIDES										
P-068A-SS	alpha-BHC	mg/kg	0.05	<0.05	<0.20	105%	118%	S-east:			
EP-068A-SS	нсв	mg/kg	0.05	<0.05	<0.20	111%	121%	A			
EP-068A-SS	beta-BHC & gamma-BHC	mg/kg	0.1	<0.1	<0.4	107%	125%	110%	112%		
EP-068A-SS	delta-BHC	mg/kg	0.05	<0.05	<0.20	109%	121%		122		
P-068A-SS	Heptachlor	mg/kg	0.05	<0.05	<0.20	110%	120%	121%	114%	1 1	
EP-068A-SS	Aldrin	mg/kg	0.05	<0.05	<0.20	109%	120%	97.4%	94.2%		
EP-068A-SS	Heptachlor epoxide	mg/kg	0.05	<0.05	<0.20	111%	119%	Landa .			
P-068A-SS	Chlordane - trans	mg/kg	0.05	<0.05	<0.20	115%	121%				
EP-068A-SS	Endosulfan 1	mg/kg	0.05	<0.05	<0.20	116%	119%	2-14			
EP-068A-SS	Chlordane - cis	mg/kg	0.05	<0.05	<0.20	115%	120%				
P-068A-SS	Dieldrin	mg/kg	0.05	<0.05	<0.20	115%	124%	149%	148%		
EP-068A-SS	DDE	mg/kg	0.05	<0.05	<0.20	115%	120%				
EP-068A-SS	Endrin	mg/kg	0.05	<0.05	<0.20	119%	124%	154%	153%	1	
P-068A-SS	Endosulfan 2	mg/kg	0.05	<0.05	<0.20	135%	123%				
EP-068A-SS	DDD	mg/kg	0.05	0.07	<0.20	117%	121%		-	1	
P-068A-SS	Endrin aldehyde	mg/kg	0.05	<0.05	<0.20	119%	122%		<u></u> ,		
EP-068A-SS	Endosulfan sulfate	mg/kg	0.05	<0.05	<0.20	121%	122%		120		
P-068A-SS	DDT	mg/kg	0.2	<0.2	<0.2	126%	120%	245%	228%		
EP-068A-SS	Endrin ketone	mg/kg	0.05	<0.05	<0.20	117%	121%	-			
EP-068A-SS	Methoxychlor	mg/kg	0.2	<0.2	<0.2	127%	111%	1			
EP-068S-SS EP-068S-SS	ORGANOCHLORINE PESTICIDE SURR Dibromo-DDE		100	3.5	what)						
_1 -0000-00	DIDIDITIO-DDE	%	1 _	107	125	106	113	88	84		

ALS Environmental

ORGANICS QUALITY CONTROL REPORT

BATCH NO: EM15150

DATE BATCH RECEIVED:

19/12/2002

CLIENT: Beveridge Williams

DATE BATCH COMPLETED: 9/01/2003

PROJECT: Oakleigh South

Method Code	Test	Matrix	Method	Reference	QC Lot Number		Date	
			Extraction	Analysis		Samples Extracted	Samples Analysed	
EP-068	Pesticides	Soil	Tumbler	USEPA 8270B	VOCOPS311	24/12/2002	24/12/2002	

Where applicable, internal standards are added to sample extracts prior to instrumental analysis. Absolute peak areas and retention times fall within the criteria specified in the individual methods. Continuing Calibration (CC) standards are run at the frequency of 1 in every 20 samples.

Abbreviations: SV = semivolatile, V = volatile

^{*:} In-house methods

BATCH	QUALITY	CONT	ROL	CONTR	OL SPIKE/	DUPLI	CATE				
		ALSE	P-068 : F	esticides			22323242424		1000000		
QC LOT No. :	VOCOPS	3311			ANALYST	S.MCG	RATH				
MATRIX:	Soils										
	Blank	Spike	5	SPIKE QC	RESULTS		Co	ntrol L	imits		
	Conc	Level	SCS	DCS	Average	RPD	R	ec.	RPI		
COMPOUND			Rec.	Rec.	Rec.						
	mg/kg	mg/kg		%	%	%	Low	High	%		
EP068A : OC Pestici	des										
a-BHC	<0.2	0.25	105	118	112	11.7	67.5	126	0 - 2		
НСВ	<0.2	0.25	111	121	116	8.62	66.4	128	0 - 2		
b- & g-BHC	<0.4	0.5	107	125	116	15.5	69.3	129	0 - 2		
d-BHC	<0.2	0.25	109	121	115	10.4	77.4	128	0 - 2		
Heptachlor	<0,2	0.25	110	120	115	8.7	71.7	129	0 - 2		
Aldrin	<0.2	0.25	109	120	115	9.61	78.3	129	0 - 2		
Heptachlor epoxide	<0.2	0.25	111	119	115	6.96	73.9	133	0 - 2		
Chlordane peak no 1	<0.2	0.25	115	121	118	5.08	76.7	134	0 - 2		
Endosulfan 1	<0.2	0.25	116	119	118	2.55	76	132	0 - 2		
Chlordane peak no. 2	<0.2	0.25	115	120	118	4.26	73.5	135	0 - 2		
Dieldrin	<0.2	0.25	115	123	119	6.72	78.5	134	0 - 2		
DDE	<0.2	0.25	115	120	118	4.26	81.3	127	0 - 2		
Endrin	<0.2	0.25	119	124	122	4.12	71.5	139	0 - 2		
Endosulfan 2	<0.2	0.25	135	123	129	9.3	76.7	131	0 - 20		
DDD	<0.2	0.25	117	121	119	3.36	79.1	129	0 - 20		
Endrin aldehyde	<0.2	0.25	119	122	121	2.49	75.7	132	1 - 20		
Endosulfan sulfate	<0.2	0.25	121	122	122	0.82	72.7	139	0 - 20		
DDT	<0.2	0.25	126	120	123	4.88	66.4	136	0 - 20		
Endrin ketone	<0.2	0.25	117	121	119	3.36	67.6	136	0 - 20		
Methoxychlor	<0.2	0.25	127	111	119	13.4	63.9	130	0 - 20		
EP068S : OC Surroga	ate										
Dibromo-DDE	125%	0.5	106	113	110	6.39	77.6	122	0 - 20		

COMMENTS:

- 1) The recovery control limits are based on ALS laboratory statistical data. (Method QWI-ORG/07)
- 2) The control limits on RPD (relative percent deviation) are fixed.
- 3) *: Recovery or RPD falls outside of the recommended control limits.

BATCH QUALITY CONTROL - DUPLICATE

ALS EP-068: Pesticides

QC LOT No. :

VOCOPS311

MATRIX:

Soils

ANALYST:

S.MCGRATH

			C DUPLICATE	RESULTS	
COMPOUND	LOR	EM15150	EM15150	RPD	Cont. Limit
	mg/kg	mg/kg	mg/kg		%
EP068A : OC Pesticides					
a-BHC	0.025	< 0.025	< 0.025	n/a	
НСВ	0.025	< 0.025	< 0.025	n/a	
b- & g-BHC	0.05	< 0.05	< 0.05	n/a	
d-BHC	0.025	<0.025	< 0.025	n/a	
Heptachlor	0.025	< 0.025	< 0.025	n/a	
Aldrin	0.025	< 0.025	<0.025	n/a	
Heptachlor epoxide	0.025	< 0.025	<0.025	n/a	1
Chlordane peak no 1	0.025	< 0.025	<0.025	n/a	
Endosulfan 1	0.025	<0.025	<0.025	n/a	
Chlordane peak no. 2	0.025	< 0.025	< 0.025	n/a	
Dieldrin	0.025	<0.025	<0.025	n/a	
DDE	0.025	0.025	0.0279	11	No limit
Endrin	0.025	<0.025	< 0.025	n/a	
Endosulfan 2	0.025	<0.025	<0.025	n/a	
DDD	0.025	0.043	0.0666	43.1	No limit
Endrin aldehyde	0.025	< 0.025	< 0.025	n/a	
Endosulfan sulfate	0.025	<0.025	< 0.025	n/a	
DDT	0.1	<0.1	<0.1	n/a	
Endrin ketone	0.025	<0.025	<0.025	n/a	
Methoxychlor	0.1	<0.1	<0.1	n/a	
EP068S : OC Surrogate	0	100			
Dibromo-DDE	1%	75.9%	107%	34	* 0 - 20

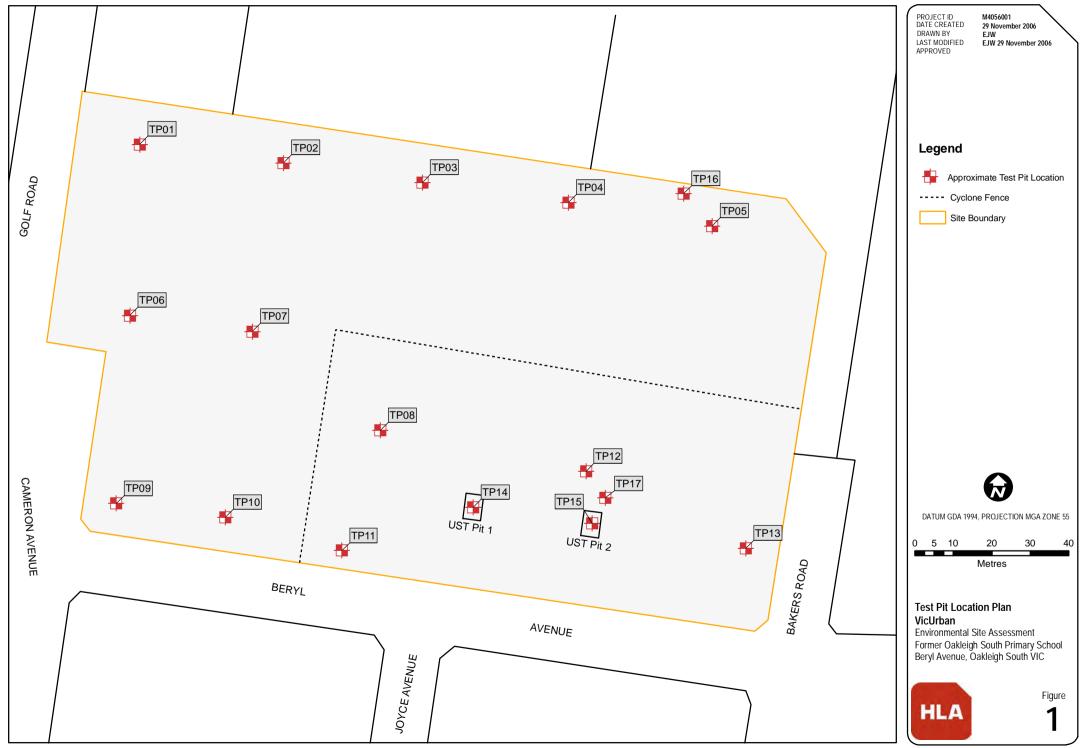
Note: The permitted range for RPD (relative percent deviation) is specified in ALS Method QWI-EN/38 and is dependent on the magnitude of results in comparison to the level of reporting:

Result < 10 times LOR, no limit.

Result between 10 and 20 times LOR, 0% - 50%.

Results > 20 times LOR, 0% - 20%.

	ALS EP-068	: Semiv	olatile O	rganic Co	mpounds		
QC LOT No. :	VOCOPS	311			ANALYST:	S.MCGI	RATH
MATRIX:	Soils				Sample ID:	E	EM15059-1
	Sample	Spike		SPIKE Q	CRESULTS		Cont. Limit
COMPOUND	Results	Level	MS Rec.	MSD Rec.	Average Rec.	RPD	RPD
	mg/kg	mg/kg	%	%	%	%	%
EP068A : OC Pesticides	3			100			
b- & g-BHC	<0.05	0.25	110	112	111	1.8	0 - 20
Heptachlor	<0.025	0.25	121	114	118	5.96	0 - 20
Aldrin	<0.025	0.25	97.4	94.2	95.8	3.34	0 - 20
Dieldrin	<0.025	0.25	149	148	149	0.673	0 - 20
Endrin	<0.025	0.25	154	153	154	0.651	0 - 20
DDT	<0.1	0.25	245	228	237	7.19	0 - 20
EP068S : OC Surrogate							
Dibromo-DDE	83.9%	0.5	87.8	84	85.9	4.42	0 - 20


COMMENTS:

- The RPD control limits are fixed.
 *: RPD falls outside the recommended control limit.

Attachment C: HLA 2006

- Figure
- Test Pit Logs

BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT 05/12/06

			phone: 03 8 03 8699 21		2199			
PRO.							DATE 31/10/2006	
PROJ	ECT N	AME	Oakleigh S	Sout	h Prima	ry Sch	DATE 31/10/2006 BLANK	
DRIL	ING M	FTH	ner Beryl Av OD Test Pi	e an t	d Bake	rs Rd,	Oakleigh South SCREEN GRAVEL PACK	
SAME	LING I	METI	HOD GRAE	3			SANITARY SEAL/BENTONITE	
SURF	ACE E	LEV	ATION				STABILISED WATER LEVEL	
LOGO	. HEAD SED BY	/100 ' F	Pritchard T	Spr	oal		STABILISED WATER LEVEL GROUND WATER ELEVATION	
	MENTS			.ор.				
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
						717 7 7 77 7	TOPSOIL / fill, silty sand, grey	
							FILL, grey silty sand with gravel and boulder sized basalt fragments, concrete and brick fragments, dry	0.10
0.0							FILL, sandy silty clay, gravel, brick and basalt fragments, dry, sand increasing with depth	0.25
		m	TP01_ 0.5					0.00
							SILTY SAND, grey, dry, loose	0.60
0.0		an,	TP01_		1		Becoming light grey Becoming brown-grey, very fine grained silty sand	
			1.1		-		Total Depth: 1.20 m	1.20
							τοιαι <i>σ</i> εριπ. 1.20 m	

BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT 05/12/06

DDC			03 8699 21				DATE 24/40/2000	
DRIL	LING M PLING I	ETH:	OD <u>Test Pit</u> HOD <u>GRAB</u>	e an	и ваке	S Ru,	DATE 31/10/2006	
WELI LOG	FACE E L HEAD SED BY MENTS	/TO(_E.	ATION C Pritchard, T	.Spr	oal		STABILISED WATER LEVEL GROUND WATER ELEVATION	
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
0.0			TP02_ 0.2	*			TOPSOIL / fill, grey silty sand, loose, dry FILL, sandy clay, yellow-brown with red and black mottling, dry, low plasticity, stiff, contains brick and basalt inclusions (< 50 mm)	0.10
0.0			TP02_ 1.1				Silty SAND, light grey, very dry, loose, becoming denser with depth Total Depth: 1.20 m	1.20

PROJECT NUMBER M405601	DATE 31/10/2006
PROJECT NAME Oakleigh South Primary School	BLANK
LOCATION Corner Beryl Ave and Bakers Rd, Oakleigh South	SCREEN
DRILLING METHOD Test Pit	GRAVEL PACK
SAMPLING METHOD GRAB	SANITARY SEAL/BENTONITE
SURFACE ELEVATION	STABILISED WATER LEVEL
WELL HEAD/TOC	GROUND WATER ELEVATION
LOGGED BY E. Pritchard, T.Sproal	_
COMMENTS	

PID (ppm)	BLOW COUNTS RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
0.0	m.	TP03_ 0.2	*	-		TOPSOIL / fill, grey silty sand, loose, dry FILL, sandy clay, yellow-brown with red and black mottling, dry, low plasticity, stiff, contains brick and basalt inclusions (< 50 mm)	0.10
0.0		TP03_ 0.7				Silty SAND, light grey, very dry, loose, becoming denser with depth sandy CLAY, yellow-grey, stiff, very dry, low plasticity, homogeneous	0.80
				<u> </u>		Total Depth: 1.00 m	1.00

BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT 05/12/06

			ephone: 03 8 (: 03 8699 21		2199			
PROJ							DATE 31/10/2006	
PROJ	ECT N	ΑM	E Oakleigh S	out	h Prima	ry Sch	DATE 31/10/2006 ool BLANK	
LOCA	TION	Co	rner Beryl Ave	e an	d Bake	rs Rd,	Oakleigh South SCREEN	
DRILL	ING M	EII	HOD Test Pit				GRAVEL PACK	
			THOD <u>GRAB</u>				SANITARY SEAL/BENTONITE STABILISED WATER LEVEL	
WELL	HEAD	/TC	C				GROUND WATER ELEVATION	
LOGG	ED BY	' E	. Pritchard, T.	.Spr	oal			
	MENTS							
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
						1/2/1/2 7/1/2	TOPSOIL, silty sand, grey, dry, contains rootlets	0.10
							Silty SAND, light grey, very dry, loose, becoming denser with depth	0.10
0.0		8	TP04_ 0.4					0.60
0.0			TD0.4				Silty CLAY, mottled orange-brown, medium plasticity, dry, contains rootlets interbedded with grey sandy clay	
		m	TP04_ 0.7					0.80
					-	илил	Total Depth: 0.80 m	0.00

PROJECT NUMBER M405601	DATE <u>31/10/2006</u>
PROJECT NAME Oakleigh South Primary School	_ BLANK
LOCATION Corner Beryl Ave and Bakers Rd, Oakleigh South	_ SCREEN
DRILLING METHOD Test Pit	GRAVEL PACK
SAMPLING METHOD GRAB	SANITARY SEAL/BENTONITE
SURFACE ELEVATION	STABILISED WATER LEVEL
WELL HEAD/TOC	GROUND WATER ELEVATION
LOGGED BY E. Pritchard, T.Sproal	
COMMENTS	_

PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
						<u>x</u> <u>y</u> <u>y</u> <u>y</u> <u>y</u>	TOPSOIL / fill, grey silty sand, loose, dry Silty SAND, light grey, very dry, loose, becoming denser with depth	0.1
0.0		£)	TP05_ 0.5	*				
0.0		E.	TP05_ 0.9		 1		Sandy CLAY (with some silty clay), grey with orange-brown mottling, slightly moist, medium plasticity Total Depth: 1.00 m	1.0

PRO.	JECT N	Fax UME AME	epnone: 03 : 03 8699 2 BER_M4056 : Oakleigh ner Beryl Av	122 01 Soutl	n Prima	ıry Scho	DATE 31/10/2006 BLANK Dakleigh South SCREEN	
DRIL SAMI SURI WEL	LING M PLING FACE E L HEAD	MET MET LEV	IOD <u>Test P</u> HOD <u>GRAI</u> ATION C	it 3			GRAVEL PACK SANITARY SEAL/BENTONITE STABILISED WATER LEVEL GROUND WATER ELEVATION	
- 1			,					
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
						1/ 1/1/	TOPSOIL / fill, grey silty clay, dry	
							FILL, silty sand, grey, loose, dry, contains brick inclusions	0.10
0.0		~~~	TP06_ 0.5				FILL, silty clay, grey-brown, dry, contains bitumen and brick inclusions, very heterogeneous	0.30
OT 05/12/06		E)	TP06_ 0.8		- 1 -		Sandy CLAY, mottled brown-orange-grey, moist, possibly disturbed/re-worked natural material	
JGS_8NOV06.GPJ HLA_SYD.GI			TP06_ 1.3				Silty CLAY, dark grey, loose, slighty moist	1.10
BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT					-	44444	Total Depth: 1.40 m	

PROJECT NUMBER M405601	DATE 31/10/2006	
PROJECT NAME Oakleigh South Primary School	BLANK	
LOCATION Corner Beryl Ave and Bakers Rd, Oakleigh South	SCREEN	
DRILLING METHOD Test Pit	GRAVEL PACK	
SAMPLING METHOD GRAB	SANITARY SEAL/BENTONITE	
SURFACE ELEVATION	STABILISED WATER LEVEL	
WELL HEAD/TOC	GROUND WATER ELEVATION	
LOGGED BY _E. Pritchard, T.Sproal		
COMMENTS		
		_

PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
						7 7 7 7 7 7 7	TOPSOIL / fill, grey slits sand, roots FILL, gravel sized crushed rock in silty sandy matrix, contains concrete pieces and brick fragments	0.10
0.0		m	TP07_ 0.2	*				0.4
							FILL, silty sand, dark grey, contains brick and concrete pieces	0.4
							FILL, sandy clay, brown and orange mottling	0.7
							Silty SAND, fine grained, dark grey/grey-brown.	0.8
0.0		£)	TP07_ 1.1	, -	1 		Becoming light grey fine grained silty sand	1.0
							Total Depth: 1.30 m	1.3
							PAGE	

PROJECT NUMBER M405601	DATE _31/10/2006			
PROJECT NAME Oakleigh South Primary School	BLANK			
LOCATION Corner Beryl Ave and Bakers Rd, Oakleigh South	SCREEN			
DRILLING METHOD Test Pit	GRAVEL PACK			
SAMPLING METHOD GRAB	SANITARY SEAL/BENTONITE			
SURFACE ELEVATION	STABILISED WATER LEVEL			
WELL HEAD/TOC	GROUND WATER ELEVATION			
LOGGED BY E. Pritchard, T.Sproal				
COMMENTS	_			

PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
0.0	,	m	TP08_ 0.3	*			TOPSOIL / fill, grey silty clay, dry FILL, dark brown clay with orange mottling and large concrete pieces. Thin layer of concrete/sand at 0.2 m.	0.10
							SILTY SAND, dark grey, dry, loose Becoming becoming light grey - white, becoming coarser.	0.50
0.0	,	~~~	TP08_ 1.1		1 		Total Depth: 1.20 m	1.20

BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT 05/12/06

DRILI SAMI SURF WELL LOGO COMI	JECT N JECT N ATION LING M PLING I FACE E HEAD GED BY MENTS	Cor ETH WET LEV O/TO	OD Test P HOD GRAF ATION C Pritchard, 1	122 South South γe and it B	h Prima d Baker	3 Nu,	DATE 31/10/2006 BLANK Cakleigh South GRAVEL PACK SANITARY SEAL/BENTONITE STABILISED WATER LEVEL GROUND WATER ELEVATION	
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
0.0		an.	TP09_ 0.4	*			TOPSOIL / fill, silty sand, brown-grey, contains rootlets FILL, sandy clay, grey brown with orange and red mottling, basalt, brick and concrete inclusions (< 50mm) Silty SAND, dark grey, loose, dry	0.10
0.0		zn.	TP09_ 1.0		_ 1 -		Total Depth: 1.20 m	1.20

BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT 05/12/06

			ephone: 03 8 : 03 8699 21		2199			
PROJ	IECT N				n Primai	ry Scho	DATE 31/10/2006 BLANK	
DRILI SAME	ATION LING M PLING I	Cor IETH MET	ner Beryl Ave IOD <u>Test Pit</u> IHOD GRAB	e an	d Baker	s Rd, O	eigh South SCREEN	
	GED BY			.Spr	oal			
PID (ppm)	BLOW	RECOVERY	SAMPLE	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
0.0		en,	TP10_ 0.3				OPSOIL / fill, silty sand, grey ILL, sandy clay, brown-orange with red mottling ilty SAND, dark grey, loose, dry	0.10
0.0		(F)	TP10_ 1.0		_ 1 _		ecoming pale grey silty sand otal Depth: 1.10 m	0.80

BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT 05/12/06

PROJ LOCA DRILI SAME SURE WELL LOGO	JECT NATION LING MELING IN TACE ELING IN TAC	UMI Col ETH MET LEV	rner Beryl Ave HOD Test Pit HOD GRAB ATION C Pritchard, T	01 Sout e an	d Bake	rs Rd,	DATE 31/10/2006 OOI BLANK Oakleigh South SCREEN GRAVEL PACK SANITARY SEAL/BENTONITE STABILISED WATER LEVEL GROUND WATER ELEVATION	
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
0.0		E	TP11_ 0.3				TOPSOIL / fill, grey silty sand with rootlets FILL, sandy clay, grey with orange and brown mottling, contains brick fragments, concrete pieces, large roots and rootlets Silty SAND, dark grey, dry, loose, contains roots and roorlets	0.10
0.0			TP11_ 1.1				Total Depth: 1.20 m	_1.20

S	ORILI SAMF SURF VELL	ING M PLING I ACE E HEAD	Fax: UMB AME Corr ETH METI LEV O/TO	OD Test Pi HOD GRAE ATION Pritchard, T	122 01 South e and t	n Prima d Bakei		DATE 31/10/2006 BLANK SCREEN GRAVEL PACK SANITARY SEAL/BENTONITE STABILISED WATER LEVEL GROUND WATER ELEVATION	
	PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
	0.0		£2	TP12_ 0.3				TOPSOIL / fill, grey silty sand FILL, sandy clay, brown with dark grey mottling Silty SAND, dark grey, loose, dry	0.10
BORING / WELL CONSTRUCTION LOG M4056001_TESTPITL.OGS_8NOV08.GPJ HLA_SYD.GDT 05/12/06	0.0		<u> </u>	TP12_ 1.1		_ 1 _		Becoming very moist with depth Sandy silty CLAY, green and orange, moist, medium to high plasticity Total Depth: 1.20 m	1.10

DRIL SAM SUR WEL LOG	JECT N JECT N ATION LING N PLING FACE E L HEAL GED B	UMB AME Corr IETH METI LEV O/TOO	OD Test P HOD GRAI ATION	South ye an it B		,	DATE 31/10/2006 BLANK SCREEN GRAVEL PACK SANITARY SEAL/BENTONITE STABILISED WATER LEVEL GROUND WATER ELEVATION	
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
0.0		18 P	TP13_ 0.2	*			TOPSOIL / fill, grey silty sand with rootlets Silty SAND, grey, dry, loose, contains abundant roots	0.10
BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT 05/12/06 0			TP13_ 1.0		_ 1 -		Becoming brown and moist Total Depth: 1.20 m	1.20

BORING / WELL CONSTRUCTION LOG M4056001_TESTPITLOGS_8NOV06.GPJ HLA_SYD.GDT 05/12/06

DRILL SAMF SURF WELL LOGG	ECT NATION LING MACE E	Fax: UMB AME Corr ETH METH LEV O/TOG	ner Beryl Av IOD Test P HOD GRAI ATION C Pritchard, 1	122 501 South ve and Pit B	n Prima d Bake	rs Rd, (DATE 31/10/2006 BLANK Dakleigh South GRAVEL PACK SANITARY SEAL/BENTONITE STABILISED WATER LEVEL GROUND WATER ELEVATION	
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
							FILL, silty sand, grey-brown FILL, grey sandy clay with dark grey and orange mottling FILL, crushed rock backfill, yellow-grey, becoming wet with depth	0.10
0.0		™	TP14_ 1.4	*				
0.0			TP14_ 1.7				Sandy CLAY, mottled grey - brown and orange Total Depth: 1.80 m	1.70

		ax.	03 8699 2	122						
PRO.	JECT NU	MB	ER <u>M4056</u>	301					DATE _31/10/2006	
PRO.	JECT NA	ME	Oakleigh	South	ı Prima	ry Sc	hool		BLANK	
LOCATION Corner Beryl Ave and Bakers Rd, Oakleigh South									_ SCREEN	
DRIL	LING ME	THO	DD Test P	it					_ GRAVEL PACK	
SAMI	PLING M	ETH	IOD GRA	В					SANITARY SEAL/BENTONITE	
SURF	ACE EL	EVA	ATION						STABILISED WATER LEVEL	
WELI	_ HEAD/	TOC	:						GROUND WATER ELEVATION	
LOG	GED BY	E. l	Pritchard,	T.Spr	oal				_	
СОМ	MENTS .									
		_				_				_
	()	≿l	~							⊢

PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
						½½ ½ ½ ½½	TOPSOIL / fill, grey silty sand with rootlets FILL, grey silty sand , dry, loose	0.10
					 		FILL, sandy clay, grey with dark grey and orange mottling, diesel odour noted	0.50
0.0			TP15_ 1.3	*	_ 1 -		FILL, crushed rock backfill, yellow-grey	1.10
0.0		~~ ~~	TP15_ 1.6				Sandy CLAY, mottled grey - brown and orange	1.50
							Total Depth: 1.60 m	1.60

Fax: 03 8699 2122	
PROJECT NUMBER M405601	DATE _31/10/2006
PROJECT NAME Oakleigh South Primary School	BLANK
LOCATION Corner Beryl Ave and Bakers Rd, Oakleigh South	SCREEN
DRILLING METHOD Test Pit	GRAVEL PACK
SAMPLING METHOD GRAB	SANITARY SEAL/BENTONITE
SURFACE ELEVATION	STABILISED WATER LEVEL
WELL HEAD/TOC	GROUND WATER ELEVATION
LOGGED BY E. Pritchard, T.Sproal	_
COMMENTS	
	 -

				_				
PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
						1/ 1/ 1/ 1/ 1/ 1/	TOPSOIL / fill, grey silty sand, loose, dry	
							FILL, brown-grey sandy clay, rootlets	0.1
								0.2
							Silty SAND, light grey, very dry, loose	
								0.4
							Total Depth: 0.40 m	

Fax: 03 8699 2122							
PROJECT NUMBER M405601	DATE 31/10/2006						
PROJECT NAME Oakleigh South Primary School	BLANK						
LOCATION Corner Beryl Ave and Bakers Rd, Oakleigh South	SCREEN						
DRILLING METHOD Test Pit	GRAVEL PACK						
SAMPLING METHOD GRAB	SANITARY SEAL/BENTONITE						
SURFACE ELEVATION	STABILISED WATER LEVEL						
WELL HEAD/TOC	GROUND WATER ELEVATION						
LOGGED BY E. Pritchard, T.Sproal							
COMMENTS							
NTS VERY (SED GL) SHIC	ACT						

PID (ppm)	BLOW	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT
						<u>11/2</u> 1/2 1/2 1/2	TOPSOIL / fill, grey silty sand with rootlets	0.10
							FILL, silty sand, grey-brown, dry, with gravel, chunks of clay, glass, timber and plastic fragments Becoming very moist to wet, becoming dark grey. Sewer odour noted with increasing moisture.	
0.0			TP17_ 1.5 TP17_ 1.7	*			Sandy CLAY, grey-green with orange mottling, slightly moist, medium plasticity Total Depth: 1.70 m	1.6 1.7